Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications

被引:96
作者
Tsuchizawa, Tai [1 ]
Yamada, Koji [1 ]
Watanabe, Toshifumi [1 ]
Park, Sungbong [1 ]
Nishi, Hidetaka [1 ]
Kou, Rai [1 ]
Shinojima, Hiroyuki [1 ]
Itabashi, Sei-ichi [1 ]
机构
[1] NTT Corp, NTT Microsyst Integrat Labs, Atsugi, Kanagawa 2430198, Japan
关键词
Germanium (Ge) photodetector (PD); integrated optical device; silica waveguide; silicon (Si) photonics; Si wire waveguide; variable optical attenuator (VOA); WIRE WAVE-GUIDES; HIGH-SPEED; PHOTONIC RECEIVER; HIGH RESPONSIVITY; COMPACT; TRANSMISSION; FILTERS;
D O I
10.1109/JSTQE.2010.2089430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents our recent progress with the integration of silicon (Si) photonic devices for optical telecommunications. To integrate Si wire waveguides, germanium (Ge) photodetectors (PDs) and silica waveguides, we have developed processes for the selective epitaxial growth of Ge on a Si waveguide core and for the low-temperature deposition of silica waveguide film and introduced spot size converters (SSCs) for coupling Si-wire and silica waveguide with low loss. Using these processes and SSCs, we have managed to monolithically integrate Si variable optical attenuators (VOAs) and Ge PDs, and Si VOAs and a silica arrayed waveguide grating (AWG). In the integrated VOA-PD, the Ge PD accurately detects the attenuation of light power in the Si VOA. The 3-dB cutoff frequency in VOA-PD synchronous operation is around 100 MHz, which is limited by the VOA. The integrated VOA-AWG provides high-speed power-level adjustment independently in every channel of the AWG with a response time of 15 ns. These integrated Si photonics devices exhibit sufficient performance for application to future telecommunications systems that combine WDM and burst-mode packets.
引用
收藏
页码:516 / 525
页数:10
相关论文
共 45 条
[1]   High performance, waveguide integrated Ge photodetectors [J].
Ahn, Donghwan ;
Hong, Ching-yin ;
Liu, Jifeng ;
Giziewicz, Wojciech ;
Beals, Mark ;
Kimerling, Lionel C. ;
Michel, Jurgen ;
Chen, Jian ;
Kartner, Franz X. .
OPTICS EXPRESS, 2007, 15 (07) :3916-3921
[2]   Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology [J].
Bogaerts, W ;
Baets, R ;
Dumon, P ;
Wiaux, V ;
Beckx, S ;
Taillaert, D ;
Luyssaert, B ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :401-412
[3]   Compact wavelength-selective functions in silicon-on-insulator photonic wires [J].
Bogaerts, Wim ;
Dumon, Pieter ;
Van Thourhout, Dries ;
Taillaert, Dirk ;
Jaenen, Patrick ;
Wouters, Johan ;
Beckx, Stephan ;
Wiaux, Vincent ;
Baets, Roel G. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (06) :1394-1401
[4]  
Bora G. L., 2003, IBM J RES DEV, V47, P239
[5]   Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors [J].
Chen, Long ;
Preston, Kyle ;
Manipatruni, Sasikanth ;
Lipson, Michal .
OPTICS EXPRESS, 2009, 17 (17) :15248-15256
[6]   Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides [J].
Chu, T ;
Yamada, H ;
Ishida, S ;
Arakawa, Y .
OPTICS EXPRESS, 2005, 13 (25) :10109-10114
[7]   Multi-channel silicon photonic receiver based on ring-resonators [J].
Fang, Qing ;
Phang, Yu Ting ;
Tan, Chee Wei ;
Liow, Tsung-Yang ;
Bin Yu, Ming ;
Lo, Guo Qiang ;
Kwong, Dim Lee .
OPTICS EXPRESS, 2010, 18 (13) :13510-13515
[8]   WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability [J].
Fang, Qing ;
Liow, Tsung-Yang ;
Song, Jun Feng ;
Ang, Kah Wee ;
Bin Yu, Ming ;
Lo, Guo Qiang ;
Kwong, Dim-Lee .
OPTICS EXPRESS, 2010, 18 (05) :5106-5113
[9]   Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks [J].
Fujiwara, M ;
Kani, J ;
Suzuki, H ;
Iwatsuki, K .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (02) :740-746
[10]   Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides [J].
Fukazawa, T ;
Ohno, F ;
Baba, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (5B) :L673-L675