共 50 条
Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture
被引:43
|作者:
He, Lu-Xi
[1
,2
,3
]
He, Liang-Ying
[1
,2
,3
]
Gao, Fang-Zhou
[1
,2
,3
]
Wu, Dai-Ling
[1
,2
,3
]
Ye, Pu
[1
,2
,3
]
Cheng, Yu-Xiao
[1
,2
,3
]
Chen, Zi-Yin
[1
,2
,3
]
Hu, Li-Xin
[1
,2
,3
]
Liu, You-Sheng
[1
,2
,3
]
Chen, Jun
[1
,2
,4
]
Ying, Guang-Guo
[1
,2
,3
]
机构:
[1] South China Normal Univ, SCNU Environm Res Inst, Guangdong Prov Key Lab Chem Pollut & Environm Saf, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, MOE Key Lab Theoret Chem Environm, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Sch Environm, Guangzhou 510006, Peoples R China
[4] Minist Water Resources, Pearl River Hydraul Res Inst, Pearl River Water Resources Commiss, Guangdong Prov Engn Technol Res Ctr Life & Hlth R, Guangzhou 510611, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Antimicrobial resistance;
Aquaculture;
Fish;
Antimicrobials;
Microbe;
VETERINARY ANTIBIOTICS;
ANTIMICROBIAL RESISTANCE;
AQUACULTURE;
BACTERIA;
COSELECTION;
CHINA;
METAL;
FATE;
ENVIRONMENTS;
EVOLUTION;
D O I:
10.1016/j.scitotenv.2021.152042
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.
引用
收藏
页数:12
相关论文