Metaheuristics for multiobjective optimisation

被引:0
|
作者
Liefooghe, Arnaud [1 ]
机构
[1] Univ Lille 1, LIFL, CNRS, INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
来源
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH | 2011年 / 9卷 / 02期
关键词
Combinatorial optimisation; Multi-objective optimisation; Cooperative methods; Metaheuristic; Routing; Scheduling;
D O I
10.1007/s10288-010-0137-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This is a summary of the author's PhD thesis supervised by Laetitia Jourdan and El-Ghazali Talbi and defended on 8 December 2009 at the Universit, Lille 1. The thesis is written in French and is available from http://sites.google.com/site/arnaudliefooghe/. This work deals with the design, implementation and experimental analysis of metaheuristics for solving multiobjective optimisation problems, with a particular interest on hard and large combinatorial problems from the field of logistics. After focusing on a unified view of multiobjective metaheuristics, we propose new cooperative, adaptive and parallel approaches. The performance of these methods are experimented on a scheduling and a routing problem involving two or three objective functions. We finally discuss how to adapt such metaheuristics during the search process in order to handle uncertainty that may occur from many different sources.
引用
收藏
页码:219 / 222
页数:4
相关论文
共 50 条
  • [1] Metaheuristics for multiobjective optimisation: Cooperative approaches, uncertainty handling and application in logistics
    Liefooghe A.
    4OR, 2011, 9 (2) : 219 - 222
  • [2] A comparative study on multiobjective metaheuristics for solving constrained in-core fuel management optimisation problems
    Schlunz, E. B.
    Bokov, P. M.
    van Vuuren, J. H.
    COMPUTERS & OPERATIONS RESEARCH, 2016, 75 : 174 - 190
  • [3] Robust multiobjective optimisation for fuzzy job shop problems
    Jose Palacios, Juan
    Gonzalez-Rodriguez, Ines
    Vela, Camino R.
    Puente, Jorge
    APPLIED SOFT COMPUTING, 2017, 56 : 604 - 616
  • [4] Scientific applications in the cloud: Resource optimisation based on metaheuristics
    Mokhtari A.
    Azizi M.
    Gabli M.
    Scalable Computing, 2020, 21 (04): : 649 - 660
  • [5] Hyper-Heuristics to customise metaheuristics for continuous optimisation
    Cruz-Duarte, Jorge M.
    Amaya, Ivan
    Ortiz-Bayliss, Jose C.
    Conant-Pablos, Santiago E.
    Terashima-Marin, Hugo
    Shi, Yong
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 66
  • [6] SCIENTIFIC APPLICATIONS IN THE CLOUD: RESOURCE OPTIMISATION BASED ON METAHEURISTICS
    Mokhtari, Anas
    Azizi, Mostafa
    Gabli, Mohammed
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2020, 21 (04): : 649 - 660
  • [7] Disjunctive Programming for Multiobjective Discrete Optimisation
    Bektas, Tolga
    INFORMS JOURNAL ON COMPUTING, 2018, 30 (04) : 625 - 633
  • [8] Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation
    Blot, Aymeric
    Kessaci, Marie-Eleonore
    Jourdan, Laetitia
    JOURNAL OF HEURISTICS, 2018, 24 (06) : 853 - 877
  • [9] Multiobjective design optimisation of coronary stents
    Pant, Sanjay
    Limbert, Georges
    Curzen, Nick P.
    Bressloff, Neil W.
    BIOMATERIALS, 2011, 32 (31) : 7755 - 7773
  • [10] Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation
    Aymeric Blot
    Marie-Éléonore Kessaci
    Laetitia Jourdan
    Journal of Heuristics, 2018, 24 : 853 - 877