Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes

被引:92
|
作者
Byeon, Ayeong [1 ]
Hatter, C. B. [2 ]
Park, Jae H. [1 ]
Ahn, Chi W. [3 ]
Gogotsi, Yury [2 ]
Lee, Jae W. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Drexel Univ, Dept Mat Sci & Engn, AJ Drexel Nanomat Inst, 3141 Chestnut St, Philadelphia, PA 19104 USA
[3] Natl Nanofab Ctr NNFC, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Molybdenum oxide; Lithium-ion battery; MXene; Carbon dioxide; Oxidation; Amorphous carbon; CARBON-DIOXIDE; METAL CARBIDES; POROUS CARBON; DOPED CARBON; REDUCTION; INTERCALATION; NANOSHEETS; NANOTUBES; BORON;
D O I
10.1016/j.electacta.2017.11.149
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Multilayer Mo(2)CTx MXene is used as a precursor to produce molybdenum oxide (MoO2)-disordered carbon hybrid materials using a one-step CO2 oxidation. The composites show clear, short plateaus in the charge/discharge curves as well as reversible phase transition peaks in cyclic voltammetry for the resulting MoO2. The electrochemical measurements support the generation of the metal oxide in the resulting composite materials. The generation of molybdenum oxide from Mo2CTx is verified from the plateau in Lithorn charge-discharge profile as wells as various characterizations of XRD, XPS, etc. The resulting MoO2 active material coated on a copper foil shows a Li-ion capacity of 323 mAh/g at 50 mA/g (0.1 C) and 180 mAh/g at 1 A/g (4.0 C) with 85% retention for approximately 300 cycles. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:979 / 987
页数:9
相关论文
共 50 条
  • [31] Cotton/rGO/carbon-coated SnO2 nanoparticle-composites as superior anode for Lithium ion battery
    Zhang, Xueqian
    Huang, Xiaoxiao
    Zhang, Xiaodong
    Xia, Long
    Zhong, Bo
    Zhang, Tao
    Wen, Guangwu
    MATERIALS & DESIGN, 2017, 114 : 234 - 242
  • [32] MoO2 nanobelts modified with an MOF-derived carbon layer for high performance lithium-ion battery anodes
    Zhang, Wei
    Wang, Bo
    Luo, Hao
    Jin, Fan
    Ruan, Tingting
    Wang, Dianlong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 803 : 664 - 670
  • [33] Synthesis of NiSe2 Nanoparticles Embedded into Carbon Nanoplate as Lithium/Sodium Ion Battery Anodes
    Zhang, Xiuhua
    Zhang, Taozhi
    Zheng, Ruijuan
    Zhao, Chenhao
    Zhou, Yunlong
    Hu, Zhibiao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (12):
  • [34] Interweaving of multilevel carbon networks with mesoporous TiO2 for lithium-ion battery anodes
    Lin, Zixia
    Zheng, Mingbo
    Zhao, Bin
    Pan, Lijia
    Pu, Lin
    Shi, Yi
    RSC ADVANCES, 2013, 3 (47): : 24882 - 24885
  • [35] Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes
    Zhou, Jian
    Gao, Shaohua
    Guo, Zhonglu
    Sun, Zhimei
    CERAMICS INTERNATIONAL, 2017, 43 (14) : 11450 - 11454
  • [36] Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes
    Li, Xiaoyan
    Chen, Yuming
    Zhou, Limin
    Mai, Yiu-Wing
    Huang, Haitao
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (11) : 3875 - 3880
  • [37] H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes
    Ahmed, Bilal
    Anjum, Dalaver H.
    Hedhili, Mohamed N.
    Gogotsi, Yury
    Alshareef, Husam N.
    NANOSCALE, 2016, 8 (14) : 7580 - 7587
  • [38] Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes
    Wei, Zhen
    Li, Ruoshi
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2013, 238 : 165 - 172
  • [39] S-N-doping TiO2@ MXene heterostructure in-situ derived from MXene frameworks as high-rate anodes for Lithium/Sodium-ion batteries
    Wu, Chenyu
    Wang, Xiuzhen
    Zhu, Ying
    Dong, Lei
    Xu, Jingjing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 977
  • [40] Carbon coated MnO@Mn3N2 core-shell composites for high performance lithium ion battery anodes
    Wu, Yongmin
    Liu, Mengjia
    Feng, Hongbin
    Li, Jinghong
    NANOSCALE, 2014, 6 (24) : 14697 - 14701