Finite vs affine W-algebras

被引:148
|
作者
De Sole, Alberto [1 ,2 ]
Kac, Victor G. [3 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Citta Univ, Ist Nazl Alta Matemat, I-00185 Rome, Italy
[3] Harvard Univ, MIT, Dept Math, Cambridge, MA 02139 USA
来源
JAPANESE JOURNAL OF MATHEMATICS | 2006年 / 1卷 / 01期
关键词
vertex algebra; (non-linear) Lie conformal algebra; deformed vertex operators; twisted module over a vertex algebra; Zhu algebra; finite and affine W-algebras; quasi-classical limit;
D O I
10.1007/s11537-006-0505-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Section 1 we review various equivalent definitions of a vertex algebra V. The main novelty here is the definition in terms of an indefinite integral of the X-bracket. In Section 2 we construct, in the most general framework, the Zhu algebra Zhu(Gamma)V, an associative algebra which "controls" Gamma-twisted representations of the vertex algebra V with a given Hamiltonian operator H. An important special case of this construction is the H-twisted Zhu algebra ZhU(H)V. In Section 3 we review the theory of non-linear Lie conformal algebras (respectively non-linear Lie algebras). Their universal enveloping vertex algebras (resp. universal enveloping algebras) form an important class of freely generated vertex algebras (resp. PBW generated associative algebras). We also introduce the H-twisted Zhu non-linear Lie algebra ZhU(H)R of a non-linear Lie conformal algebra R and we show that its universal enveloping algebra is isomorphic to the H-twisted Zhu algebra of the universal enveloping vertex algebra of R. After a discussion of the necessary cohomological material in Section 4, we review in Section 5 the construction and basic properties of affine and finite W-algebras, obtained by the method of quantum Hamiltonian reduction. Those are some of the most intensively studied examples of freely generated vertex algebras and PBW generated associative algebras. Applying the machinery developed in Sections 3 and 4, we then show that the H-twisted Zhu algebra of an affine W-algebra is isomorphic to the finite W-algebra, attached to the same data. In Section 6 we define the Zhu algebra of a Poisson vertex algebra, and we discuss quasiclassical limits. In the Appendix, the equivalence of three definitions of a finite W-algebra is established.
引用
收藏
页码:137 / 261
页数:125
相关论文
共 50 条
  • [41] FINITE-DIMENSIONAL REPRESENTATIONS OF W-ALGEBRAS
    Losev, Ivan
    DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) : 99 - 143
  • [42] Generators of the quantum finite W-algebras in type A
    De Sole, Alberto
    Fedele, Laura
    Valeri, Daniele
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (09)
  • [43] A note on Verma modules for finite W-algebras
    Goodwin, Simon M.
    JOURNAL OF ALGEBRA, 2010, 324 (08) : 2058 - 2063
  • [44] Derived subalgebras of centralisers and finite W-algebras
    Premet, Alexander
    Topley, Lewis
    COMPOSITIO MATHEMATICA, 2014, 150 (09) : 1485 - 1548
  • [45] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02): : 261 - 315
  • [46] Defining Relations for Minimal Unitary Quantum Affine W-Algebras
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [47] The Brylinski Filtration for Affine Kac-Moody Algebras and Representations of W-algebras
    Govindarajan, Suresh
    Sharma, Sachin S.
    Viswanath, Sankaran
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (02) : 491 - 512
  • [48] W-algebras
    ORaifeartaigh, L
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 79 - 85
  • [49] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Dražen Adamović
    Victor G. Kac
    Pierluigi Möseneder Frajria
    Paolo Papi
    Ozren Perše
    Japanese Journal of Mathematics, 2017, 12 : 261 - 315
  • [50] Deformed W-algebras, quantum affine algebras and integrable models of statistical mechanics
    Bouwknegt, P
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 402 - 406