Similarity solutions of a class of perturbative Fokker-Planck equation

被引:7
|
作者
Lin, Wen-Tsan [1 ]
Ho, Choon-Lin [1 ]
机构
[1] Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan
关键词
D O I
10.1063/1.3605481
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a previous work, a perturbative approach to a class of Fokker-Planck equations, which have constant diffusion coefficients and small time-dependent drift coefficients, was developed by exploiting the close connection between the Fokker-Planck equations and the Schroumldinger equations. In this work, we further explore the possibility of similarity solutions of such a class of Fokker-Planck equations. These solutions possess definite scaling behaviors and are obtained by means of the so-called similarity method. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605481]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] High fidelity numerical solutions of the Fokker-Planck equation
    Wojtkiewicz, SF
    Bergman, LA
    Spencer, BF
    STRUCTURAL SAFETY AND RELIABILITY, VOLS. 1-3, 1998, : 933 - 940
  • [22] Generalized Fokker-Planck equation: Derivation and exact solutions
    Denisov, S. I.
    Horsthemke, W.
    Haenggi, P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (04): : 567 - 575
  • [23] On new invariant solutions of generalized Fokker-Planck equation
    Yao, RX
    Li, ZB
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (05) : 665 - 668
  • [24] Solutions of the Fokker-Planck equation for a Morse isospectral potential
    Polotto, F.
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
  • [25] The Evolution to Equilibrium of Solutions to Nonlinear Fokker-Planck Equation
    Barbu, Viorel
    Roeckner, Michael
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (01) : 89 - 131
  • [26] On New Invariant Solutions of Generalized Fokker-Planck Equation
    YAO Ruo-Xia~(1
    CommunicationsinTheoreticalPhysics, 2004, 41 (05) : 665 - 668
  • [27] REGULARITY OF WEAK SOLUTIONS OF THE NONLINEAR FOKKER-PLANCK EQUATION
    Tassa, Tamir
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (04) : 475 - 490
  • [28] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [29] Generalized Fokker-Planck equation: Derivation and exact solutions
    S. I. Denisov
    W. Horsthemke
    P. Hänggi
    The European Physical Journal B, 2009, 68 : 567 - 575
  • [30] Numerical Solutions of the Fokker-Planck Equation for Magnetic Nanoparticles
    Ansalone, D. P.
    Ragusa, C.
    d'Aquino, M.
    Serpico, C.
    Bertotti, G.
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (11) : 5216 - 5219