Hadoop Job Scheduling Based on Hybrid Ant-Genetic Algorithm

被引:1
作者
Huang, Xiaofei [1 ,2 ]
Zhou, Hui [2 ]
Wu, Wei [2 ,3 ]
机构
[1] Hainan Coll Software Technol, Qionghai 571400, Peoples R China
[2] Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Peoples R China
[3] Chinese Acad Sci, Inst Deep Sea Sci & Engn, Sanya 572000, Peoples R China
来源
2015 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY | 2015年
关键词
Ant Algorithm; Genetic Algorithm; Hadoop job scheduling; optimization;
D O I
10.1109/CyberC.2015.48
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Massive job scheduling problem is an important research area in big data research era. This paper proposed self-adaptive job scheduling mechanism based on Ant-Genetic Algorithm aiming at improving convergence speed and accuracy by mutation strategy based on Ant Algorithm and efficient refinement within Genetic Algorithm. The experimental results show that the proposed algorithm can find the most suitable nodes for current jobs and improve efficiency of job scheduling on Hadoop clusters effectively.
引用
收藏
页码:226 / 229
页数:4
相关论文
共 14 条
  • [1] Dynamic Job Scheduling Using Ant Colony Optimization for Mobile Cloud Computing
    Achary, Rathnakar
    Vityanathan, V.
    Raj, Pethur
    Nagarajan, S.
    [J]. INTELLIGENT DISTRIBUTED COMPUTING, 2015, 321 : 71 - 82
  • [2] Ajay K., 2015, IJITR, P197
  • [3] Augustine D P, 2014, IMAGE, V108
  • [4] Chitharanjan K, 2013, 2013 IEEE C INF COMM, P132
  • [5] Cohen JC, 2012, IEEE GLOBE WORK, P769, DOI 10.1109/GLOCOMW.2012.6477672
  • [6] Cui HY, 2014, INT SYMP WIREL, P29, DOI 10.1109/WPMC.2014.7014785
  • [7] SHadoop: Improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters
    Gu, Rong
    Yang, Xiaoliang
    Yan, Jinshuang
    Sun, Yuanhao
    Wang, Bing
    Yuan, Chunfeng
    Huang, Yihua
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (03) : 2166 - 2179
  • [8] Kanellos I., 2014, P 26 INT C SCI STAT, P47
  • [9] KIM M, 2014, J CLUSTER COMPUTING, V17, P605, DOI DOI 10.1007/S10586-014-0381-0
  • [10] Kiveris Raimondas, 2014, P ACM S CLOUD COMP, V18, P1, DOI DOI 10.1145/2670979.2670997