Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations

被引:12
作者
Cakir, Musa [1 ]
Gunes, Baransel [1 ]
机构
[1] Van Yuzuncu Yil Univ, Dept Math, Van, Turkey
关键词
Difference scheme; error estimate; Fredholm integro-differential equation; singular perturbation; uniform mesh; Volterra integro-differential equation; DECOMPOSITION METHOD; NUMERICAL-SOLUTION; APPROXIMATE; SYSTEM;
D O I
10.1515/gmj-2021-2130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, singularly perturbed mixed integro-differential equations (SPMIDEs) are taken into account. First, the asymptotic behavior of the solution is investigated. Then, by using interpolating quadrature rules and an exponential basis function, the finite difference scheme is constructed on a uniform mesh. The stability and convergence of the proposed scheme are analyzed in the discrete maximum norm. Some numerical examples are solved, and numerical outcomes are obtained.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 43 条
[1]  
Abu Arqub O, 2015, J COMPUT ANAL APPL, V18, P857
[2]   A Computational Method for Two-Point Boundary Value Problems of Fourth-Order Mixed Integrodifferential Equations [J].
Al-Smadi, Mohammed ;
Abu Arqub, Omar ;
Momani, Shaher .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[3]  
Amiraliyev G. M., 1995, Turkish Jou.of Math., V19, P207
[4]  
Amiraliyev GM, 2020, B BELG MATH SOC-SIM, V27, P71
[5]  
Amiraliyev GM, 2018, J MATH ANAL, V9, P55
[6]   A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations [J].
Amiri, Sadegh ;
Hajipour, Mojtaba ;
Baleanu, Dumitru .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
[7]  
Bani Issa M.S., 2017, J MATH COMPUT SCI, V7, P625
[8]   Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations [J].
Banifatemi, E. ;
Razzaghi, M. ;
Yousefi, S. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (11) :1667-1675
[9]   Numerical solution of nonlinear mixed Volterra-Fredholm integral equations in complex plane via PQWs [J].
Beiglo, H. ;
Gachpazan, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
[10]   Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition [J].
Bellomo, N ;
Firmani, B ;
Guerri, L .
APPLIED MATHEMATICS LETTERS, 1999, 12 (02) :39-44