A parallel implementation of the fast multipole method for Maxwell's equations

被引:15
作者
Havé, P [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
fast multipole method; Maxwell; integral formulation; parallel implementation;
D O I
10.1002/fld.534
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is well known that the resolution of Maxwell equations may provide large dense matrices, being thus a computer intensive problem. Even small problems require a huge amount of memory to manipulate matrices during the O(N-3) involved operations. The fast multipole method enables to compress and approximate matrices. Coupled with an iterative resolution of the linear system the complexity reduces to O(N-iter N log N) operations. In order to use multiprocessors machine and to reduce computation times, we propose here a parallel implementation of the fast multiple method. This article relates our first results, as well as the difficulties encountered. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:839 / 864
页数:26
相关论文
共 28 条
[1]  
Abramovitz M., 1964, APPL MATH SERIES
[2]  
ALLEON G, 1997, TRPA9705 CERFACS
[3]   OPTIMAL INTERPOLATION OF RADIATED FIELDS OVER A SPHERE [J].
BUCCI, OM ;
GENNARELLI, C ;
SAVARESE, C .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (11) :1633-1643
[4]   ELECTROMAGNETIC-FIELDS INTERPOLATION FROM NONUNIFORM SAMPLES OVER SPHERICAL AND CYLINDRICAL SURFACES [J].
BUCCI, OM ;
GENNARELLI, C ;
RICCIO, G ;
SAVARESE, C .
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1994, 141 (02) :77-84
[5]  
BUFFA MCA, 2001, BOUNDARY ELEMENT MET
[6]  
Coifman R., 1993, IEEE Antennas and Propagation Magazine, V35, P7, DOI 10.1109/74.250128
[7]  
DARVE E, 1999, THESIS U P M CURIE
[8]   Fast algorithms for polynomial interpolation, integration, and differentiation [J].
Dutt, A ;
Gu, M ;
Rokhlin, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1689-1711
[9]  
ELDABAGHI F, 1998, APPROXIMATIONS NUMER
[10]   THE FAST MULTIPOLE METHOD (FMM) FOR ELECTROMAGNETIC SCATTERING PROBLEMS [J].
ENGHETA, N ;
MURPHY, WD ;
ROKHLIN, V ;
VASSILIOU, MS .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (06) :634-642