Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models

被引:8
|
作者
Lawless, Jerald F. [2 ]
Yilmaz, Yildiz E. [1 ]
机构
[1] Mt Sinai Hosp, Prosserman Ctr Hlth Resesarch, Samuel Lunenfeld Res Inst, Toronto, ON M5T 3L9, Canada
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Semiparametric maximum likelihood; Model misspecification; Pseudolikelihood; Clayton copula; Gumbel-Hougaard copula; Frank copula; REGRESSION-ANALYSIS; BIVARIATE; ASSOCIATION; TAU;
D O I
10.1016/j.csda.2011.02.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider bivariate distributions that are specified in terms of a parametric copula function and nonparametric or semiparametric marginal distributions. The performance of two semiparametric estimation procedures based on censored data is discussed: maximum likelihood (ML) and two-stage pseudolikelihood (PML) estimation. The two-stage procedure involves less computation and it is of interest to see whether it is significantly less efficient than the full maximum likelihood approach. We also consider cases where the copula model is misspecified, in which case PML may be better. Extensive simulation studies demonstrate that in the absence of covariates, two-stage estimation is highly efficient and has significant robustness advantages for estimating marginal distributions. In some settings, involving covariates and a high degree of association between responses, ML is more efficient. For the estimation of association, PML does not offer an advantage. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2446 / 2455
页数:10
相关论文
共 50 条
  • [41] General Semiparametric Shared Frailty Model: Estimation and Simulation with frailtySurv
    Monaco, John V.
    Gorfine, Malka
    Hsu, Li
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 86 (04): : 1 - 42
  • [42] Likelihood and pseudo-likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data
    Li, Erning
    Zhang, Dowen
    Davidian, Marie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5776 - 5790
  • [43] Semiparametric multivariate density estimation for positive data using copulas
    Bouezmarni, T.
    Rombouts, J. V. K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2040 - 2054
  • [44] Semiparametric efficient estimation of genetic relatedness with machine learning methods
    Xu Guo
    Hongwei Shi
    Weichao Yang
    Yiyuan Qian
    Niwen Zhou
    Statistics and Computing, 2025, 35 (3)
  • [45] Semiparametric estimation in the secondary analysis of case-control studies
    Ma, Yanyuan
    Carroll, Raymond J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 127 - 151
  • [46] A SEMIPARAMETRIC ESTIMATION PROCEDURE OF DEPENDENCE PARAMETERS IN MULTIVARIATE FAMILIES OF DISTRIBUTIONS
    GENEST, C
    GHOUDI, K
    RIVEST, LP
    BIOMETRIKA, 1995, 82 (03) : 543 - 552
  • [47] Sieve maximum likelihood estimation for regression models with covariates missing at random
    Chen, Qingxia
    Zeng, Donglin
    Ibrahim, Joseph G.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1309 - 1317
  • [48] Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease
    Li, Shuwei
    Wu, Qiwei
    Sun, Jianguo
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (08) : 2151 - 2166
  • [49] On semiparametric modelling, estimation and inference for survival data subject to dependent censoring
    Deresa, N. W.
    Van Keilegom, I
    BIOMETRIKA, 2021, 108 (04) : 965 - 979
  • [50] Sieve estimation in semiparametric modeling of longitudinal data with informative observation times
    Zhao, Xingqiu
    Deng, Shirong
    Liu, Li
    Liu, Lei
    BIOSTATISTICS, 2014, 15 (01) : 140 - 153