Finite two-dimensional oscillator: II. The radial model

被引:38
作者
Atakishiyev, NM
Pogosyan, GS
Vicent, LE
Wolf, KB
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62210, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[3] Joint Inst Nucl Res, Theoret Phys Lab, Dubna, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 44期
关键词
D O I
10.1088/0305-4470/34/44/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A finite two-dimensional radial oscillator of (N + 1)(2) points is proposed, with the dynamical Lie algebra so(4) = su(2)(x) circle plus su(2)(y) examined in part I of this work, but reduced by a subalgebra chain so(4) superset of so(3) superset of so(2). As before, there are a finite number of energies and angular momenta; the Casimir spectrum of the new chain provides the integer radii 0 less than or equal to rho less than or equal to N, and the 2 rho + 1 discrete angles on each circle rho are obtained from the finite Fourier transform of angular momenta. The wavefunctions of the finite radial oscillator are so (3) Clebsch-Gordan coefficients. We define here the Hankel-Hahn transforms (with dual Hahn polynomials) as finite-N unitary approximations to Hankel integral transforms (with Bessel functions), obtained in the contraction limit N --> infinity.
引用
收藏
页码:9399 / 9415
页数:17
相关论文
共 45 条
[1]   The Wigner function for general Lie groups and the wavelet transform [J].
Ali, ST ;
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
ANNALES HENRI POINCARE, 2000, 1 (04) :685-714
[2]  
ANK M, 1999, J PHYS A, V32, pL371
[3]   Covariant discretization of axis-symmetric linear optical systems [J].
Atakishiyev, NM ;
Nagiyev, SM ;
Vicent, LE ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12) :2301-2314
[4]   Wigner distribution function for finite systems [J].
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6247-6261
[5]  
ATAKISHIYEV NM, 1994, REV MEX FIS, V40, P366
[6]   Continuous vs. discrete fractional Fourier transforms [J].
Atakishiyev, NM ;
Vicent, LE ;
Wolf, KB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (01) :73-95
[7]   Fractional Fourier-Kravchuk transform [J].
Atakishiyev, NM ;
Wolf, KB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (07) :1467-1477
[8]  
Atakishiyev NM, 1998, REV MEX FIS, V44, P235
[9]  
ATAKISHIYEV NM, UNPUB CONTRACTIONS F
[10]  
ATAKISHIYEV NM, 2001, J PHYS A, V34, P9349