Adaptive extensions of a two-stage group sequential procedure for testing primary and secondary endpoints (I): unknown correlation between the endpoints
被引:20
作者:
Tamhane, Ajit C.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept IEMS, Evanston, IL 60208 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
Tamhane, Ajit C.
[1
]
Wu, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Stat, Evanston, IL 60208 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
Wu, Yi
[2
]
Mehta, Cyrus R.
论文数: 0引用数: 0
h-index: 0
机构:
Cytel Corp, Cambridge, MA 02139 USA
Harvard Univ, Sch Publ Hlth, Cambridge, MA 02139 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
Mehta, Cyrus R.
[3
,4
]
机构:
[1] Northwestern Univ, Dept IEMS, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Stat, Evanston, IL 60208 USA
[3] Cytel Corp, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Publ Hlth, Cambridge, MA 02139 USA
In a previous paper we studied a two-stage group sequential procedure (GSP) for testing primary and secondary endpoints where the primary endpoint serves as a gatekeeper for the secondary endpoint. We assumed a simple setup of a bivariate normal distribution for the two endpoints with the correlation coefficient ? between them being either an unknown nuisance parameter or a known constant. Under the former assumption, we used the least favorable value of ??=?1 to compute the critical boundaries of a conservative GSP. Under the latter assumption, we computed the critical boundaries of an exact GSP. However, neither assumption is very practical. The ??=?1 assumption is too conservative resulting in loss of power, whereas the known ? assumption is never true in practice. In this part I of a two-part paper on adaptive extensions of this two-stage procedure (part II deals with sample size re-estimation), we propose an intermediate approach that uses the sample correlation coefficient r from the first-stage data to adaptively adjust the secondary boundary after accounting for the sampling error in r via an upper confidence limit on ? by using a method due to Berger and Boos. We show via simulation that this approach achieves 511% absolute secondary power gain for ? =0.5. The preferred boundary combination in terms of high primary as well as secondary power is that of O'Brien and Fleming for the primary and of Pocock for the secondary. The proposed approach using this boundary combination achieves 72-84% relative secondary power gain (with respect to the exact GSP that assumes known ?). We give a clinical trial example to illustrate the proposed procedure. Copyright (C) 2012 John Wiley & Sons, Ltd.
机构:
Northwestern Univ, Dept IEMS, Evanston, IL 60208 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
Tamhane, Ajit C.
Wu, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Stat, Evanston, IL 60208 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
Wu, Yi
Mehta, Cyrus R.
论文数: 0引用数: 0
h-index: 0
机构:
Cytel Corp, Cambridge, MA 02139 USA
Harvard Univ, Sch Publ Hlth, Dept Biostat, Cambridge, MA 02138 USANorthwestern Univ, Dept IEMS, Evanston, IL 60208 USA
机构:
Ctr Oscar Lambret, Dept Gen Oncol, F-59020 Lille, France
Lille Nord de France Univ, Unit Res EA 2694, Sch Med, F-59000 Lille, FranceCtr Oscar Lambret, Dept Gen Oncol, F-59020 Lille, France
Penel, Nicolas
Ryckewaert, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Oscar Lambret, Dept Gen Oncol, F-59020 Lille, FranceCtr Oscar Lambret, Dept Gen Oncol, F-59020 Lille, France
Ryckewaert, Thomas
Kramar, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Lille Nord de France Univ, Unit Res EA 2694, Sch Med, F-59000 Lille, France
Ctr Oscar Lambret, Methodol & Biostat Unit, F-59020 Lille, FranceCtr Oscar Lambret, Dept Gen Oncol, F-59020 Lille, France
机构:
Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, CanadaQueens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
Sun, Yiming
Zhang, Xinyi
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USAQueens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
Zhang, Xinyi
Tan, Xianming
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27599 USAQueens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
Tan, Xianming
Tu, Dongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ, Canadian Canc Trials Grp, Kingston, ON K7L 3N6, CanadaQueens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
机构:
Osaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Natl Cerebral & Cardiovasc Ctr, Res & Dev Initiat Ctr, Off Biostat & Data Management, Suita, Osaka 5658565, JapanOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Asakura, Koko
Hamasaki, Toshimitsu
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Natl Cerebral & Cardiovasc Ctr, Res & Dev Initiat Ctr, Off Biostat & Data Management, Suita, Osaka 5658565, JapanOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Hamasaki, Toshimitsu
Sugimoto, Tomoyuki
论文数: 0引用数: 0
h-index: 0
机构:
Hirosaki Univ, Grad Sch Sci & Technol, Dept Math Sci, Aomori, JapanOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Sugimoto, Tomoyuki
Hayashi, Kenichi
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, JapanOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Hayashi, Kenichi
Evans, Scott R.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Univ, Sch Publ Hlth, Ctr Biostat AIDS Res, Boston, MA 02115 USAOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan
Evans, Scott R.
Sozu, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Sch Publ Hlth, Dept Biostat, Kyoto, JapanOsaka Univ, Grad Sch Med, Dept Biomed Stat, Osaka, Japan