Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD)

被引:33
|
作者
Maurya, S. K. [1 ]
Singh, Ksh Newton [2 ]
Dayanandan, B. [1 ]
机构
[1] Univ Nizwa, Coll Arts & Sci, Dept Math & Phys Sci, Nizwa, Oman
[2] Natl Def Acad, Dept Phys, Pune 411023, Maharashtra, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 05期
关键词
STARS; SPHERES; MASS;
D O I
10.1140/epjc/s10052-020-8005-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We presented a non-singular solution of Einstein's field equations using gravitational decoupling by means of complete geometric deformation (CGD) in the anisotropic domain for compact star models. In this approach both the gravitational potentials are deformed as nu=xi+beta <mml:mspace width="0.166667em"></mml:mspace>h(r) and e-lambda=mu+beta <mml:mspace width="0.166667em"></mml:mspace>f(r), where beta is a coupling constant. Then we solve more complex field equations under above transformations by using a particular form of deformation function h(r) for two different cases namely the mimic constraint for the pressure {p(r)=theta 11</mml:msubsup>} and the mimic constraint for the density {rho (r)=theta 00} (Ovalle in Phys Lett B 788:213, 2019). The compact star models have been constructed by taking <mml:msub>M0/R=0.2 for two different non-zero values of beta. Moreover, the boundary conditions are also performed for the said complete geometric deformation in the presence of anisotropic matter distribution. We also find pressure, density, anisotropy and causality conditions that are physically acceptable throughout the model. The M-R curve is also presented to support our model for describing a realistic compact object such as neutron stars.
引用
收藏
页数:12
相关论文
共 20 条
  • [11] A non-singular black hole model as a possible end-product of gravitational collapse
    Kazanas, Demosthenes
    Mbonye, Manasse R.
    RECENT ADVANCES IN ASTRONOMY AND ASTROPHYSICS, 2006, 848 : 713 - +
  • [12] Charged anisotropic compact star in f (R, T) gravity: A minimal geometric deformation gravitational decoupling approach
    Maurya, S. K.
    Tello-Ortiz, Francisco
    PHYSICS OF THE DARK UNIVERSE, 2020, 27
  • [13] Role of gravitational decoupling on isotropization and complexity of self-gravitating system under complete geometric deformation approach
    S. K. Maurya
    Riju Nag
    The European Physical Journal C, 2022, 82
  • [14] Role of gravitational decoupling on isotropization and complexity of self-gravitating system under complete geometric deformation approach
    Maurya, S. K.
    Nag, Riju
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01):
  • [15] Gravitational decoupling minimal geometric deformation model in modified f (R, T) gravity theory
    Maurya, S. K.
    Errehymy, Abdelghani
    Singh, Ksh. Newton
    Tello-Ortiz, Francisco
    Daoud, Mohammed
    PHYSICS OF THE DARK UNIVERSE, 2020, 30
  • [16] Non-singular anisotropic solutions for strange star model in f(R,T,RζγTζγ) gravity theory
    Feng, Yihu
    Naseer, Tayyab
    Mustafa, G.
    Maurya, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (01):
  • [17] Mathematical analysis of Hepatitis C Virus infection model in the framework of non-local and non-singular kernel fractional derivative
    Slimane, Ibrahim
    Nazir, Ghazala
    Nieto, Juan J.
    Yaqoob, Faheem
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (01)
  • [18] Complexity-Free Anisotropic Solution of Buchdahl's Model and Energy Exchange Between Relativistic Fluids by Extended Gravitational Decoupling
    Maurya, S. K.
    Singh, Ksh. Newton
    Govender, Megan
    Ray, Saibal
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (6-7):
  • [19] A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Torres, L.
    Escobar-Jimenez, R. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 406 - 424
  • [20] Non-singular anisotropic solutions for strange star model in f(R,T,RζγTζγ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$\end{document} gravity theory
    Yihu Feng
    Tayyab Naseer
    G. Mustafa
    S. K. Maurya
    The European Physical Journal C, 85 (1):