REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR'S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T = ∞
被引:3
|
作者:
Naito, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Naito, Satoshi
[1
]
Nomoto, Fumihiko
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Nomoto, Fumihiko
[1
]
Sagaki, Daisuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
Sagaki, Daisuke
[2
]
机构:
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at t = of the nonsymmetric Macdonald polynomials E-w(q,t), wW, where is a dominant integral weight and W is a finite Weyl group.