Shared Embedding Based Neural Networks for Knowledge Graph Completion

被引:19
|
作者
Guan, Saiping [1 ]
Jin, Xiaolong
Wang, Yuanzhuo
Cheng, Xueqi
机构
[1] Univ Chinese Acad Sci, Chinese Acad Sci, CAS Key Lab Network Data Sci & Technol, Inst Comp Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph completion; shared embedding; neural network;
D O I
10.1145/3269206.3271704
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graphs (KGs) have facilitated many real-world applications (e.g., vertical search and intelligent question answering). However, they are usually incomplete, which affects the performance of such KG based applications. To alleviate this problem, a number of Knowledge Graph Completion (KGC) methods have been developed to predict those implicit triples. Tensor/matrix based methods and translation based methods have attracted great attention for a long time. Recently, neural network has been introduced into KGC due to its extensive superiority in many fields (e.g., natural language processing and computer vision), and achieves promising results. In this paper, we propose a Shared Embedding based Neural Network (SENN) model for KGC. It integrates the prediction tasks of head entities, relations and tail entities into a neural network based framework with shared embeddings of entities and relations, while explicitly considering the differences among these prediction tasks. Moreover, we propose an adaptively weighted loss mechanism, which dynamically adjusts the weights of losses according to the mapping properties of relations, and the prediction tasks. Since relation prediction usually performs better than head and tail entity predictions, we further extend SENN to SENN+ by employing it to assist head and tail entity predictions. Experiments on benchmark datasets validate the effectiveness and merits of the proposed SENN and SENN+ methods. The shared embeddings and the adaptively weighted loss mechanism are also testified to be effective.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [1] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [2] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [3] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [4] A Novel Embedding Model for Knowledge Graph Entity Alignment Based on Graph Neural Networks
    Li, Hongchan
    Han, Zhaoyang
    Zhu, Haodong
    Qian, Yuchao
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [5] HyperspherE: An Embedding Method for Knowledge Graph Completion Based on Hypersphere
    Dong, Yao
    Guo, Xiaobo
    Xiang, Ji
    Liu, Kai
    Tang, Zhihao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 517 - 528
  • [6] Knowledge Graph Completion Method Based on Embedding Representation and CNN
    Ma, Yuchen
    Li, Shuqin
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 269 - 273
  • [7] A Novel Embedding Model for Knowledge Graph Completion Based on Quaternion
    Gao, Haipeng
    Yang, Kun
    Yang, Yuxue
    Qin, Ke
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2021), 2021, : 470 - 474
  • [8] An Approach to Knowledge Base Completion by a Committee-Based Knowledge Graph Embedding
    Choi, Su Jeong
    Song, Hyun-Je
    Park, Seong-Bae
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [9] Learning Embedding for Knowledge Graph Completion with Hypernetwork
    Le, Thanh
    Nguyen, Duy
    Le, Bac
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 16 - 28
  • [10] Enhancing Knowledge Graph Completion By Embedding Correlations
    Pal, Soumajit
    Urbani, Jacopo
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2247 - 2250