Limiting values under scaling of the Lebesgue function for polynomial interpolation on spheres

被引:5
|
作者
Bos, L [1 ]
De Marchi, S
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
D O I
10.1006/jath.1998.3245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider interpolation by spherical harmonics at points on a (d - 1)-dimensional sphere and show that, in the limit, as the points coalesce under an angular scaling, the Lebesgue function of the process converges to that of an associated algebraic interpolation problem for the original angles considered as points in Rd-1. (C) 1999 Academic Press.
引用
收藏
页码:366 / 377
页数:12
相关论文
共 50 条