Parameter-Uniform Numerical Scheme for Singularly Perturbed Delay Parabolic Reaction Diffusion Equations with Integral Boundary Condition

被引:14
作者
Gobena, Wakjira Tolassa [1 ]
Duressa, Gemechis File [1 ]
机构
[1] Jimma Univ, Dept Math, Jimma 378, Ethiopia
关键词
FINITE-DIFFERENCE METHOD; UPWIND;
D O I
10.1155/2021/9993644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical computation for the class of singularly perturbed delay parabolic reaction diffusion equations with integral boundary condition has been considered. A parameter-uniform numerical method is constructed via the nonstandard finite difference method for the spatial direction, and the backward Euler method for the resulting system of initial value problems in temporal direction is used. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and the rate of convergence for different values of perturbation parameter epsilon and mesh sizes are tabulated for two model examples. The proposed method is shown to be parameter-uniformly convergent.
引用
收藏
页数:16
相关论文
共 33 条
[1]   A numerical treatment for singularly perturbed differential equations with integral boundary condition [J].
Amiraliyev, G. M. ;
Amiraliyeva, I. G. ;
Kudu, Mustafa .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :574-582
[2]   A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations [J].
Ansari, A. R. ;
Bakr, S. A. ;
Shishkin, G. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :552-566
[3]  
Baker C. T., 1999, REPORT USE DELAY DIF
[4]   Parameter-Robust Numerical Scheme for Time-Dependent Singularly Perturbed Reaction-Diffusion Problem with Large Delay [J].
Bansal, Komal ;
Sharma, Kapil K. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (02) :127-154
[5]   Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments [J].
Bansal, Komal ;
Sharma, Kapil K. .
NUMERICAL ALGORITHMS, 2017, 75 (01) :113-145
[6]   A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation [J].
Bashier, E. B. M. ;
Patidar, K. C. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (05) :779-794
[7]   A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation [J].
Bashier, E. B. M. ;
Patidar, K. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4728-4739
[8]   Existence of solution to Korteweg-de Vries equation in a non-parabolic domain [J].
Benia, Yassine ;
Scapellato, Andrea .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[9]   A finite difference method for the singularly perturbed problem with nonlocal boundary condition [J].
Cakir, M ;
Amiraliyev, GM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (02) :539-549
[10]   Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience [J].
Daba, Imiru Takele ;
Duressa, Gemechis File .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2021, 37 (02)