Lp-ANALOGUES OF BERNSTEIN AND MARKOV INEQUALITIES

被引:0
作者
Munoz-Fernandez, G. A. [1 ]
Sanchez, V. M. [1 ]
Seoane-Sepulveda, J. B. [1 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2011年 / 14卷 / 01期
关键词
Bernstein and Markov type inequality; trinomial; BANACH-SPACES; CONVEX-BODIES; POLYNOMIALS; DERIVATIVES; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let parallel to . parallel to(infinity) denote the sup norm on [-1,1]. If x is an element of [-1,1] is fixed and M-m,M-n(x) is the best constant in vertical bar p'(x)vertical bar <= M-m,M-n(x)parallel to p parallel to(infinity), for all trinomials p of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, then the exact value of M-m,M-n(x) is known for large families of pairs (m,n) is an element of N-2. Here we consider the same problem for L-p-norms.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1916, MATH ANN
[2]  
[Anonymous], 2002, LONDON MATH SOC MONO
[3]  
Bernstein S., 1912, Mem. Cl. Sci. Acad. R. Belg, V4, P1
[4]  
Boas RP., 1969, MATH MAG, V42, P165, DOI DOI 10.2307/2688534
[5]  
BORWEIN P, 1995, GRADUATE TEXTS MATH, V161, DOI DOI 10.1007/978-1-4612-0793-1
[6]  
DUFFIN RJ, 1938, B AM MATH SOC, V44, P289
[7]  
Harris L. A., 1975, ACT SC IND, V1367, P145
[8]   Multivariate Markov polynomial inequalities and Chebyshev nodes [J].
Harris, Lawrence A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :350-357
[9]  
Markov AA, 1889, Zapishi Imp. Akad. Nauk, V62, P1
[10]  
MARKOV AA, QUESTION DI MENDELEE