Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis

被引:0
作者
Billio, Monica [1 ]
Casarin, Roberto [1 ]
机构
[1] Univ Venice, I-30123 Venice, Italy
关键词
TURNING-POINTS; TIME-SERIES; REGRESSION; INFERENCE; ONLINE;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a new class of Markov-switching models useful for business cycle analysis, with transition probabilities following independent beta autoregressive processes. We study the effects of the autoregressive dynamics on the regime duration. We propose a full Bayesian inference approach and particular attention is paid to the parameters of the latent beta autoregressive processes. We discuss the choice of the prior distributions and propose a Markov-chain Monte Carlo algorithm for estimating both the parameters and the latent variables. Finally, we provide an application to the Euro area business cycle.
引用
收藏
页数:32
相关论文
共 39 条
[1]   BAYES INFERENCE VIA GIBBS SAMPLING OF AUTOREGRESSIVE TIME-SERIES SUBJECT TO MARKOV MEAN AND VARIANCE SHIFTS [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1993, 11 (01) :1-15
[2]   A system for dating and detecting turning points in the Euro area [J].
Anas, Jacques ;
Billio, Monica ;
Ferrara, Laurent ;
Mazzi, Gian Luigi .
MANCHESTER SCHOOL, 2008, 76 (05) :549-577
[3]  
[Anonymous], EMPIRICAL E IN PRESS
[4]  
[Anonymous], 02009 CEREMADE
[5]  
[Anonymous], GROWTH CYCLE EUROZON
[6]  
[Anonymous], LECT NOTES STAT
[7]  
[Anonymous], 2004030 FED RES BANK
[8]  
[Anonymous], M CARLO STAT METHODS
[9]  
[Anonymous], P SIS 2007 INT C RIS
[10]  
[Anonymous], AM EC REV