Cycle multiplicity of some total graphs

被引:0
作者
Li, Yinkui [1 ,2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300071, Peoples R China
[2] Qinghai Nationalities Univ, Dept Math, Xining 810000, Qinghai, Peoples R China
关键词
Cycle multiplicity; Cartesian product; Line graph; Total graph; EDGE-DISJOINT CYCLES;
D O I
10.1016/j.amc.2016.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cycle multiplicity of a graph G is the maximum number of edge disjoint cycles in G. Simoes Pereira gave the formula of cycle multiplicity for line and total graph of forests. Recently, Akbar Ali determined cycle multiplicity of total graph for C-n and K-1,K-n. In this paper, we determine the cycle multiplicity of some Cartesian product graphs, the total graphs of complete graph, complete bipartite graph and unicycle graph, which generalize the results of Akbar Ali and Panayappan (2010) in [1]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 13 条
[1]  
Akbar Ali M.M., 2010, INT J ENG SCI TECHNO, V2, P54
[2]  
Alon N, 1996, J GRAPH THEOR, V22, P231, DOI 10.1002/(SICI)1097-0118(199607)22:3<231::AID-JGT3>3.0.CO
[3]  
2-N
[4]  
Bondy J., 2008, GRADUATE TEXTS MATH
[5]  
Chartrand G., 1971, J COMBIN THEORY B, V10, P12
[6]  
Corradi K., 1963, Acta Math. Acad. Sci. Hung., V14, P423
[7]  
Dirac GabrielA., 1963, Canad. Math. Bull, V6, P183
[8]   ON INDEPENDENT CIRCUITS CONTAINED IN A GRAPH [J].
ERDOS, P ;
POSA, L .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (02) :347-&
[9]  
Fujita S., 2005, Electron. Notes Discret. Math, V22, P409, DOI [10.1016/j.endm.2005.06.067, DOI 10.1016/J.ENDM.2005.06.067]
[10]   EDGE DISJOINT CYCLES IN GRAPHS [J].
HAO, L .
JOURNAL OF GRAPH THEORY, 1989, 13 (03) :313-322