Individual complex dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential

被引:14
作者
Akemann, G. [1 ]
Bloch, J. [2 ,3 ]
Shifrin, L. [1 ]
Wettig, T. [2 ,3 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Brunel Univ, BURSt Res Ctr, Uxbridge UB8 3PH, Middx, England
[3] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
D O I
10.1103/PhysRevLett.100.032002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
引用
收藏
页数:4
相关论文
共 36 条
[1]   Matrix models and QCD with chemical potential [J].
Akeman, G. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (06) :1077-1122
[2]   QCD dirac operator at nonzero chemical potential: Lattice data and matrix model (vol 92, pg 102002, 2004) - art. no. 029902 [J].
Akemann, G ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[3]   QCD Dirac operator at nonzero chemical potential: Lattice data and matrix model [J].
Akemann, G ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :102002-1
[4]   Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential [J].
Akemann, G ;
Osborn, JC ;
Splittorff, K ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 2005, 712 (1-2) :287-324
[5]   Distributions of Dirac operator eigenvalues [J].
Akemann, G ;
Damgaard, PH .
PHYSICS LETTERS B, 2004, 583 (1-2) :199-206
[6]   Microscopic correlation functions for the QCD Dirac operator with chemical potential [J].
Akemann, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (07)
[7]   The solution of a chiral random matrix model with complex eigenvalues [J].
Akemann, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3363-3378
[8]  
Akemann G., IN PRESS
[9]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[10]   Equivalence of QCD in the ε-regime and chiral random matrix theory with or without chemical potential [J].
Basile, F. ;
Akernann, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12)