Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D-printed polylactic acid lattice structures

被引:32
|
作者
Tao, Yubo [1 ]
Li, Peng [1 ]
Zhang, Hengwang [2 ]
Shi, Sheldon Q. [3 ]
Zhang, Jingfa [1 ]
Yin, Qing [1 ]
机构
[1] Qilu Univ Technol, State Key Lab Biobased Mat & Green Papermaking, Shandong Acad Sci, Jinan 250353, Peoples R China
[2] Shandong Univ Arts, Design Coll, Jinan 250300, Peoples R China
[3] Univ North Texas, Dept Mech & Energy Engn, Denton, TX 76203 USA
关键词
Rigid polyurethane; Lattice; Foam composites; 3D printing; Mechanical properties; VELOCITY IMPACT RESPONSE; ENERGY-ABSORPTION; FIBER CONTENT; CORE; OPTIMIZATION; DEFORMATION; STRENGTH; DESIGN;
D O I
10.1016/j.compstruct.2021.114866
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lightweight rigid polyurethane foam (RPUF) composites with favorable mechanical properties are demanded by numerous engineering applications. The mechanical performance of foam composites could be customized and enhanced by embedding geometric skeletons. The advancement of 3D printing technology has enabled greater freedom in manufacturing geometrically complex products. In this paper, two types of lattice structures were 3D printed with fused filament fabrication (FFF). Structural composites were prepared by filling the lattices with RPUF through the free rising method. Experimental testing and FEA modeling demonstrated that the lattice structures had significant effects on the composites' stress dissipation and fracture forms. Compared to neat RPUF, the composites exhibited greater elastic limit, compression modulus, energy absorption capabilities, flexural strength, and flexural modulus. Lattices with more struts and greater density resulted in superior compression and flexural performance. This study shows that FFF lattices are suitable for constructing RPUF composites with enhanced flexural and compression properties.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Exploring the mechanical properties of 3D-printed multilayer lattice structures for use in accommodative insoles
    Nickerson, Kimberly A.
    Li, Ellen Y.
    Telfer, Scott
    Ledoux, William R.
    Muir, Brittney C.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2024, 150
  • [42] Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
    Agaliotis, Eliana M.
    Ake-Concha, Baltazar D.
    May-Pat, Alejandro
    Morales-Arias, Juan P.
    Bernal, Celina
    Valadez-Gonzalez, Alex
    Herrera-Franco, Pedro J.
    Proust, Gwenaelle
    Francisco Koh-Dzul, J.
    Carrillo, Jose G.
    Flores-Johnson, Emmanuel A.
    POLYMERS, 2022, 14 (19)
  • [43] The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites
    Caglayan, Cigdem
    Gurkan, Idris
    Gungor, Sila
    Cebeci, Hulya
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 115 : 187 - 195
  • [44] Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures
    Farrokhabadi, Amin
    Veisi, Hossein
    Gharehbaghi, Hussain
    Montesano, John
    Behravesh, Amir Hossein
    Hedayati, Seyyed Kaveh
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (04) : 758 - 769
  • [45] Compressive properties of cementitious composites reinforced by 3D printed PA 6 lattice
    Hao, Wenfeng
    Liu, Junwei
    Kanwal, Humaira
    POLYMER TESTING, 2023, 117
  • [46] Mechanical properties and crack deflection mechanisms in 3D-Printed porous geopolymers with cellular structures
    Lori, Ali Rezaei
    Mehrali, Mehdi
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [47] Preparation and compressive properties of cementitious composites reinforced by 3D printed cellular structures with a negative Poisson's ratio
    Zhao, Guoqi
    Fan, Yichang
    Tang, Can
    Wei, Yuanyuan
    Hao, Wenfeng
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17
  • [48] Application of artificial neural network to evaluation of dimensional accuracy of 3D-printed polylactic acid parts
    Gunes, Seyhmus
    Ulkir, Osman
    Kuncan, Melih
    JOURNAL OF POLYMER SCIENCE, 2024, 62 (09) : 1864 - 1889
  • [49] Biocompatible 3D-Printed Tendon/Ligament Scaffolds Based on Polylactic Acid/Graphite Nanoplatelet Composites
    Silva, Magda
    Gomes, Susana
    Correia, Catia
    Peixoto, Daniela
    Vinhas, Adriana
    Rodrigues, Marcia T.
    Gomes, Manuela E.
    Covas, Jose A.
    Paiva, Maria C.
    Alves, Natalia M.
    NANOMATERIALS, 2023, 13 (18)
  • [50] Performance enhancement of 3D-printed carbon fiber-reinforced nylon 6 composites
    Chen, Siyu
    Cai, Longfei
    Duan, Yingzhu
    Jing, Xishuang
    Zhang, Chengyang
    Xie, Fubao
    POLYMER COMPOSITES, 2024, 45 (06) : 5754 - 5772