Electric Field Effects in Electrochemical CO2 Reduction

被引:494
作者
Chen, Leanne D. [1 ,2 ]
Urushihara, Makoto [1 ,3 ]
Chan, Karen [1 ,2 ]
Norskov, Jens K. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Mitsubishi Mat Corp, Cent Res Inst, 1002-14 Mukohyama, Naka, Ibaraki 3110102, Japan
来源
ACS CATALYSIS | 2016年 / 6卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; reduction; field effects; density functional theory; CARBON-DIOXIDE; THEORETICAL INSIGHTS; OXYGEN REDUCTION; ADSORPTION; TRANSITION; CONVERSION; POTASSIUM; ELECTROREDUCTION; POTENTIALS; PROMOTION;
D O I
10.1021/acscatal.6b02299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 has the potential to reduce greenhouse gas emissions while providing energy storage and producing chemical feedstocks. A mechanistic understanding of the process is crucial to the discovery of efficient catalysts, and an atomistic description of the electrochemical interface is a major challenge due to its complexity. Here, we examine the CO2 -> CO electrocatalytic pathway on Ag(111) using density functional theory (DFT) calculations and an explicit model of the electrochemical interface. We show that the electric field from solvated cations in the double layer and their corresponding image charges on the metal surface significantly stabilizes key intermediates ->*CO2 and *COOH. At the field-stabilized sites, the formation of *CO is rate-determining. We present a microkinetic model that incorporates field effects and electrochemical barriers from ab initio calculations. The computed polarization curves show reasonable agreement with experiment without fitting any parameters.
引用
收藏
页码:7133 / 7139
页数:7
相关论文
共 63 条
[1]   Electrostatics of solvated systems in periodic boundary conditions [J].
Andreussi, Oliviero ;
Marzari, Nicola .
PHYSICAL REVIEW B, 2014, 90 (24)
[2]   Revised self-consistent continuum solvation in electronic-structure calculations [J].
Andreussi, Oliviero ;
Dabo, Ismaila ;
Marzari, Nicola .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (06)
[3]  
Bard AJ., 1980, ELECTROCHEMICAL METH
[4]   CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study [J].
Bendavid, Leah Isseroff ;
Carter, Emily A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (49) :26048-26059
[5]   Avoiding pitfalls in the modeling of electrochemical interfaces [J].
Bjorketun, Marten E. ;
Zeng, ZhenHua ;
Ahmed, Rizwan ;
Tripkovic, Vladimir ;
Thygesen, Kristian S. ;
Rossmeisl, Jan .
CHEMICAL PHYSICS LETTERS, 2013, 555 :145-148
[6]   THE PHOTOELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE [J].
BOCKRIS, JO ;
WASS, JC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (09) :2521-2528
[7]   INSITU SPECTROSCOPIC INVESTIGATION OF ADSORBED INTERMEDIATE RADICALS IN ELECTROCHEMICAL REACTIONS - CO2- ON PLATINUM [J].
CHANDRASEKARAN, K ;
BOCKRIS, JO .
SURFACE SCIENCE, 1987, 185 (03) :495-514
[8]   KINETICS OF NITROGEN ADSORPTION ON FE(111) [J].
ERTL, G ;
LEE, SB ;
WEISS, M .
SURFACE SCIENCE, 1982, 114 (2-3) :515-526
[9]   The activated complex in chemical reactions [J].
Eyring, H .
JOURNAL OF CHEMICAL PHYSICS, 1935, 3 (02) :107-115
[10]  
Frumkin A. N., 1980, Comprehensive Treatise of Electrochemistry: The Double Layer, P221