Generative Modeling with Failure in PRISM

被引:0
|
作者
Sato, Taisuke [1 ]
Kameya, Yoshitaka [1 ]
Zhou, Neng-Fa
机构
[1] JST, Tokyo Inst Technol CREST, Meguro Ku, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PRISM is a logic-based Turing-complete symbolic-statistical modeling language with a built-in parameter learning routine. In this paper, we enhance the modeling power of PRISM by allowing general PRISM programs to fail in the generation process of observable events. Introducing failure extends the class of definable distributions but needs a generalization of the semantics of PRISM programs. We propose a three valued probabilistic semantics and show how failure enables us to pursue constraint-based modeling of complex statistical phenomena.
引用
收藏
页码:847 / 852
页数:6
相关论文
共 50 条
  • [41] Generative Anatomy Modeling Language (GAML)
    Demirel, Doga
    Yu, Alexander
    Baer-Cooper, Seth
    Halic, Tansel
    Bayrak, Coskun
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2017, 13 (04):
  • [43] Introspective Neural Networks for Generative Modeling
    Lazarow, Justin
    Jin, Long
    Tu, Zhuowen
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2793 - 2802
  • [44] Tree tensor networks for generative modeling
    Cheng, Song
    Wang, Lei
    Xiang, Tao
    Zhang, Pan
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [45] Generative Design applied to Cloud Modeling
    Vaisman Muniz, Carlos Eduardo
    Oliveira dos Santos, Wagner Luiz
    2021 20TH BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT (SBGAMES 2021), 2021, : 79 - 86
  • [46] Generative mixture modeling by autonomous estimators
    Kaski, S
    Salojärvi, J
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 250 - 254
  • [47] GEMS: Generative Modeling for Evaluation of Summaries
    Katragadda, Raul
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2010, 6008 : 724 - 735
  • [48] Uncertainty Modeling in Generative Compressed Sensing
    Zhang, Yilang
    Xu, Mengchu
    Mao, Xiaojun
    Wang, Jian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [49] Geometrical Insights for Implicit Generative Modeling
    Bottou, Leon
    Arjovsky, Martin
    Lopez-Paz, David
    Oquab, Maxime
    BRAVERMAN READINGS IN MACHINE LEARNING: KEY IDEAS FROM INCEPTION TO CURRENT STATE, 2018, 11100 : 229 - 268
  • [50] FWBP: A New Generative Modeling Scheme
    Yu, Siqi
    Jiang, Yongquan
    Yang, Yan
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 277 - 282