Generative Modeling with Failure in PRISM

被引:0
|
作者
Sato, Taisuke [1 ]
Kameya, Yoshitaka [1 ]
Zhou, Neng-Fa
机构
[1] JST, Tokyo Inst Technol CREST, Meguro Ku, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PRISM is a logic-based Turing-complete symbolic-statistical modeling language with a built-in parameter learning routine. In this paper, we enhance the modeling power of PRISM by allowing general PRISM programs to fail in the generation process of observable events. Introducing failure extends the class of definable distributions but needs a generalization of the semantics of PRISM programs. We propose a three valued probabilistic semantics and show how failure enables us to pursue constraint-based modeling of complex statistical phenomena.
引用
收藏
页码:847 / 852
页数:6
相关论文
共 50 条
  • [31] Generative Spoken Dialogue Language Modeling
    Nguyen, Tu Anh
    Kharitonov, Eugene
    Copet, Jade
    Adi, Yossi
    Hsu, Wei-Ning
    Elkahky, Ali
    Tomasello, Paden
    Algayres, Robin
    Sagot, Benoit
    Mohamed, Abdelrahman
    Dupoux, Emmanuel
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2023, 11 : 250 - 266
  • [32] Pitch Gestures in Generative Modeling of Music
    Jensen, Kristoffer
    EXPLORING MUSIC CONTENTS, 2011, 6684 : 51 - 59
  • [33] Background modeling for generative image models
    Schoenborn, Sandro
    Egger, Bernhard
    Forster, Andreas
    Vetter, Thomas
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 136 : 117 - 127
  • [34] Deep generative modeling for protein design
    Strokach, Alexey
    Kim, Philip M.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 72 : 226 - 236
  • [35] Generative Spatiotemporal Modeling Of Neutrophil Behavior
    Pandhe, Narita
    Rada, Balazs
    Quinn, Shannon
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 969 - 972
  • [36] Residual Flows for Invertible Generative Modeling
    Chen, Ricky T. Q.
    Behrmann, Jens
    Duvenaud, David
    Jacobsen, Joern-Henrik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [37] Graphite: Iterative Generative Modeling of Graphs
    Grover, Aditya
    Zweig, Aaron
    Ermon, Stefano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [38] IRGen: Generative Modeling for Image Retrieval
    Zhang, Yidan
    Zhang, Ting
    Chen, Dong
    Wang, Yujing
    Chen, Qi
    Xie, Xing
    Sun, Hao
    Deng, Weiwei
    Zhang, Qi
    Yang, Fan
    Yang, Mao
    Liao, Qingmin
    Wang, Jingdong
    Guo, Baining
    COMPUTER VISION - ECCV 2024, PT XV, 2025, 15073 : 21 - 41
  • [39] Deep Generative Modeling of LiDAR Data
    Caccia, Lucas
    van Hoof, Herke
    Courville, Aaron
    Pineau, Joelle
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5034 - 5040
  • [40] Generative Design applied to Cloud Modeling
    Vaisman Muniz, Carlos Eduardo
    Oliveira dos Santos, Wagner Luiz
    2021 20TH BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT (SBGAMES 2021), 2021, : 79 - 86