Generative Modeling with Failure in PRISM

被引:0
|
作者
Sato, Taisuke [1 ]
Kameya, Yoshitaka [1 ]
Zhou, Neng-Fa
机构
[1] JST, Tokyo Inst Technol CREST, Meguro Ku, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PRISM is a logic-based Turing-complete symbolic-statistical modeling language with a built-in parameter learning routine. In this paper, we enhance the modeling power of PRISM by allowing general PRISM programs to fail in the generation process of observable events. Introducing failure extends the class of definable distributions but needs a generalization of the semantics of PRISM programs. We propose a three valued probabilistic semantics and show how failure enables us to pursue constraint-based modeling of complex statistical phenomena.
引用
收藏
页码:847 / 852
页数:6
相关论文
共 50 条
  • [21] CHALLENGES IN GENERATIVE MODELING AND FUNCTIONING NATURE OF GENERATIVE ADVERSARIAL NETWORKS
    Sripada, Naresh Kumar
    Ismail, Mohammed B.
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 83 - 91
  • [22] Deep Generative Modeling: From Probabilistic Framework to Generative AI
    Tomczak, Jakub M.
    ENTROPY, 2025, 27 (03)
  • [23] CHUNGKING PRISM - COGNITIVE PROCESS AND INTELLIGENCE FAILURE
    NOSSAL, KR
    INTERNATIONAL JOURNAL, 1977, 32 (03): : 559 - 576
  • [24] Generative Adversarial Networks for Failure Prediction
    Zheng, Shuai
    Farahat, Ahmed
    Gupta, Chetan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 621 - 637
  • [25] PRISM: A language for symbolic-statistical modeling
    Sato, T
    Kameya, Y
    IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 1330 - 1335
  • [27] A glimpse of symbolic-statistical modeling by PRISM
    Taisuke Sato
    Journal of Intelligent Information Systems, 2008, 31 : 161 - 176
  • [28] Fairness in Generative Modeling: do it Unsupervised!
    Zameshina, M.
    Teytaud, O.
    Teytaud, Fabien
    Hosu, Vlad
    Carraz, Nathanael
    Najman, Laurent
    Wagner, Markus
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 320 - 323
  • [29] Generative Design for Building Information Modeling
    Ferreira, Bruno
    Leitao, Antonio
    ECAADE 2015: REAL TIME - EXTENDING THE REACH OF COMPUTATION, VOL 1, 2015, : 635 - 644
  • [30] Autoregressive Quantile Networks for Generative Modeling
    Ostrovski, Georg
    Dabney, Will
    Munos, Remi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80