Generative Modeling with Failure in PRISM

被引:0
|
作者
Sato, Taisuke [1 ]
Kameya, Yoshitaka [1 ]
Zhou, Neng-Fa
机构
[1] JST, Tokyo Inst Technol CREST, Meguro Ku, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PRISM is a logic-based Turing-complete symbolic-statistical modeling language with a built-in parameter learning routine. In this paper, we enhance the modeling power of PRISM by allowing general PRISM programs to fail in the generation process of observable events. Introducing failure extends the class of definable distributions but needs a generalization of the semantics of PRISM programs. We propose a three valued probabilistic semantics and show how failure enables us to pursue constraint-based modeling of complex statistical phenomena.
引用
收藏
页码:847 / 852
页数:6
相关论文
共 50 条
  • [11] The Study of Generative Modeling of Text
    Jiang, Jingjing
    Wang, Xiaoyu
    Mu, Xiangwei
    Hu, Jiaxing
    Zhu, Youqin
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 1713 - +
  • [12] Generative Modeling of InSAR Interferograms
    Rongier, Guillaume
    Rude, Cody
    Herring, Thomas
    Pankratius, Victor
    EARTH AND SPACE SCIENCE, 2019, 6 (12) : 2671 - 2683
  • [13] Score mismatching for generative modeling
    Ye, Senmao
    Liu, Fei
    NEURAL NETWORKS, 2024, 175
  • [14] Domain independent generative modeling
    Kusy, B
    Lédeczi, A
    Maróti, M
    Völgyesi, P
    11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOP ON THE ENGINEERING OF COMPUTER-BASED SYSTEMS, PROCEEDINGS, 2004, : 29 - 34
  • [15] Generative Modeling of Atmospheric Convection
    Mooers, Griffin
    Tuyls, Jens
    Mandt, Stephan
    Pritchard, Mike
    Beucler, Tom
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON CLIMATE INFORMATICS (CI2020), 2020, : 98 - 105
  • [16] Generative modeling for renal microanatomy
    Murali, Leema Krishna
    Lutnick, Brendon
    Ginley, Brandon
    Tomaszewski, John E.
    Sarder, Pinaki
    MEDICAL IMAGING 2020: DIGITAL PATHOLOGY, 2021, 11320
  • [17] Generative Modeling for Protein Structures
    Anand, Namrata
    Huang, Po-Ssu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [18] Distribution Augmentation for Generative Modeling
    Jun, Heewoo
    Child, Rewon
    Chen, Mark
    Schulman, John
    Ramesh, Aditya
    Radford, Alec
    Sutskever, Ilya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [19] An introduction to deep generative modeling
    Ruthotto L.
    Haber E.
    GAMM Mitteilungen, 2021, 44 (02)
  • [20] Learning failure-free PRISM programs
    Alsanie, Waleed
    Cussens, James
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 67 : 73 - 110