Molecular Engineering of Donor-Acceptor Conjugated Polymer/g-C3N4 Heterostructures for Significantly Enhanced Hydrogen Evolution Under Visible-Light Irradiation

被引:240
作者
Yu, Fengtao [1 ]
Wang, Zhiqiang [2 ,3 ]
Zhang, Shicong [1 ]
Ye, Haonan [1 ]
Kong, Kangyi [1 ]
Gong, Xueqing [2 ,3 ]
Hua, Jianli [1 ]
Tian, He [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Inst Fine Chem, Key Lab Adv Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Ctr Computat Chem, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Res Inst Ind Catalysis, Sch Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
关键词
donor-acceptor conjugated polymer; g-C3N4; hydrogen evolution; molecular engineering; Type II heterojunction; PHOTOCATALYTIC H-2 EVOLUTION; GRAPHITIC CARBON NITRIDE; SENSITIZED SOLAR-CELLS; CHARGE-TRANSFER; WATER; GENERATION; POLYMERS; NITROGEN; SURFACE; G-C3N4;
D O I
10.1002/adfm.201804512
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer heterojunctions (PHJs) have emerged as promising photocatalysts for the photocatalytic hydrogen evolution (PHE). Nevertheless, most PHJs exhibit unsatisfactory hydrogen evolution rate (HER), primarily attributing to their own high-energy Frenkel excitons and poor light capturing ability. In this paper, a molecular engineering strategy is developed to further broaden spectral response range and simultaneously accelerate Frenkel excitons dissociation within PHJs. For this purpose, three donor-acceptor (D-A) conjugated polymers/g-C3N4 heterojunctions with alternative donor units (fluorene, carbazole, N-annulated perylene for P1, P2, and P3, respectively) and the invariant acceptor unit (benzothiadiazole) have been designed and fabricated for efficient PHE. Experimental results show that copolymerizing different donor units into the polymer skeleton not only extends the visible-light response range but also promotes photoexciton separation within polymer/g-C3N4 PHJs. Notably, copolymerizing the strongest electron donor unit (N-annulated perylene) achieves the best light capture ability and the most effective photoexcitation separation of the P3/g-C3N4, leading to significantly increase HRE of 13.0 mmol h(-1) g(-1) with a recorded apparent quantum yield of 27.32% at 520 nm. Importantly, the Type II heterojunction mechanism within P3/CN was first proved by theoretical calculation. This work provides a promising strategy for reasonably developing efficient PHJs for solar fuel production.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects [J].
Asahi, Ryoji ;
Morikawa, Takeshi ;
Irie, Hiroshi ;
Ohwaki, Takeshi .
CHEMICAL REVIEWS, 2014, 114 (19) :9824-9852
[2]  
basaki K. S., 2017, POLYMER, V108, P305
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Trends and challenges for microporous polymers [J].
Chaoui, Nicolas ;
Trunk, Matthias ;
Dawson, Robert ;
Schmidt, Johannes ;
Thomas, Arne .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3302-3321
[5]   Molecular Design of Polymer Heterojunctions for Efficient Solar-Hydrogen Conversion [J].
Chen, Jie ;
Dong, Chung-Li ;
Zhao, Daming ;
Huang, Yu-Cheng ;
Wang, Xixi ;
Samad, Leith ;
Dang, Lianna ;
Shearer, Melinda ;
Shen, Shaohua ;
Guo, Liejin .
ADVANCED MATERIALS, 2017, 29 (21)
[6]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[7]   Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production [J].
Chen, Yilin ;
Li, Jianghua ;
Hong, Zhenhua ;
Shen, Biao ;
Lin, Bizhou ;
Gao, Bifen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) :8106-8113
[8]   Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property [J].
Chu, Sheng ;
Wang, Ying ;
Guo, Yong ;
Feng, Jianyong ;
Wang, Cuicui ;
Luo, Wenjun ;
Fan, Xiaoxing ;
Zou, Zhigang .
ACS CATALYSIS, 2013, 3 (05) :912-919
[9]   g-C3N4-Based Heterostructured Photocatalysts [J].
Fu, Junwei ;
Yu, Jiaguo ;
Jiang, Chuanjia ;
Cheng, Bei .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)
[10]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+