Invertibility and robustness of phaseless reconstruction

被引:34
|
作者
Balan, Radu [1 ]
Wang, Yang [2 ]
机构
[1] Univ Maryland, Ctr Sci Computat & Math Modeling, Dept Math, College Pk, MD 20742 USA
[2] Michigan State Univ, Sch Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Frames; Redundant representations; Phase retrieval; Phase less reconstruction;
D O I
10.1016/j.acha.2014.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the question of reconstructing a vector in a finite-dimensional real Hilbert space when only the magnitudes of the coefficients of the vector under a redundant linear map are known. We analyze various Lipschitz bounds of the nonlinear analysis map and we establish theoretical performance bounds of any reconstruction algorithm. The discussion of robustness is with respect to random noise and with respect to deterministic perturbations. We show that robust and uniformly stable reconstruction is not achievable with the minimum redundancy for phaseless reconstruction. Robust reconstruction schemes require additional redundancy than the critical threshold. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 488
页数:20
相关论文
共 50 条
  • [1] PHASELESS OBJECT RECONSTRUCTION
    VANTOORN, P
    GREENAWAY, AH
    HUISER, AMJ
    OPTICA ACTA, 1984, 31 (07): : 767 - 774
  • [2] Frames and Phaseless Reconstruction
    Balan, Radu
    FINITE FRAME THEORY: A COMPLETE INTRODUCTION TO OVERCOMPLETENESS, 2016, 73 : 175 - 199
  • [3] Phase retrieval versus phaseless reconstruction
    Botelho-Andrade, Sara
    Casazza, Peter G.
    Hanh Van Nguyen
    Tremain, Janet C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 131 - 137
  • [4] Reconstruction of fragments of spreading surface radioimages by the phaseless data
    Kostenko, P.Yu.
    Zrodnikov, A.V.
    Manoilo, S.V.
    Izvestiya VUZ: Radioelektronika, 1999, (05): : 58 - 62
  • [5] Far field reconstruction from phaseless measurement data
    Chen, ZY
    Xu, PG
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON ANTENNAS AND EM THEORY (ISAE'97), 1997, : 136 - 139
  • [6] A NOVEL LINEAR EM RECONSTRUCTION ALGORITHM WITH PHASELESS DATA
    Zheng, H.
    Wang, M. Z.
    Zhao, Z. Q.
    Li, L. L.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2010, 14 : 133 - 146
  • [7] Phaseless reconstruction from space-time samples
    Aldroubi, A.
    Krishtal, I
    Tang, S.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 395 - 414
  • [8] Characterization of Analytic Wavelet Transforms and a New Phaseless Reconstruction Algorithm
    Holighaus, Nicki
    Koliander, Guenther
    Prusa, Zdenek
    Abreu, Luis Daniel
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (15) : 3894 - 3908
  • [9] A data-driven approach to system invertibility and input reconstruction
    Mishra, Vikas Kumar
    Iannelli, Andrea
    Bajcinca, Naim
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 671 - 676
  • [10] Reconstruction of Antenna Radiation Patterns From Phaseless Measurements in Nonanechoic Chambers
    Loredo, Susana
    Leon, German
    Ayestaran, Rafael G.
    Las-Heras, Fernando
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 : 1282 - 1285