Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

被引:119
作者
Hu, Tianyu [1 ]
Su, Yanjun [1 ,2 ]
Xue, Baolin [1 ]
Liu, Jin [1 ]
Zhao, Xiaoqian [1 ]
Fang, Jingyun [1 ,3 ,4 ]
Guo, Qinghua [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Vegetat & Environm Change, Inst Bot, Beijing 100093, Peoples R China
[2] Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, Merced, CA 95343 USA
[3] Peking Univ, Coll Urban & Environm Sci, Dept Ecol, Beijing 100871, Peoples R China
[4] Peking Univ, Minist Educ, Key Lab Earth Surface Proc, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
global; forest; aboveground biomass; remote sensing; LiDAR; TROPICAL RAIN-FOREST; SMALL-FOOTPRINT LIDAR; CARBON STOCKS; RADAR BACKSCATTER; SATELLITE LIDAR; BIOSPHERE MODEL; AIRBORNE LIDAR; BOREAL FOREST; GROUND PLOTS; MODIS;
D O I
10.3390/rs8070565
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB) can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR) techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 +/- 63.80 Mg/ha) and South America (301.68 +/- 67.43 Mg/ha) had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 +/- 94.75, 166.48 +/- 84.97, and 132.97 +/- 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R-2) and root-mean-square error (RMSE) between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R-2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional AGB products tended to underestimate forest AGB density.
引用
收藏
页数:27
相关论文
共 81 条
  • [1] [Anonymous], 2008, HOLE FILLED SRTM GLO
  • [2] [Anonymous], 2008, P ISPRS ISS 7 BEIJ C
  • [3] Arneth A, 2010, NAT GEOSCI, V3, P525, DOI [10.1038/ngeo905, 10.1038/NGEO905]
  • [4] High-resolution mapping of forest carbon stocks in the Colombian Amazon
    Asner, G. P.
    Clark, J. K.
    Mascaro, J.
    Galindo Garcia, G. A.
    Chadwick, K. D.
    Navarrete Encinales, D. A.
    Paez-Acosta, G.
    Cabrera Montenegro, E.
    Kennedy-Bowdoin, T.
    Duque, A.
    Balaji, A.
    von Hildebrand, P.
    Maatoug, L.
    Phillips Bernal, J. F.
    Yepes Quintero, A. P.
    Knapp, D. E.
    Garcia Davila, M. C.
    Jacobson, J.
    Ordonez, M. F.
    [J]. BIOGEOSCIENCES, 2012, 9 (07) : 2683 - 2696
  • [5] An integrated pan-tropical biomass map using multiple reference datasets
    Avitabile, Valerio
    Herold, Martin
    Heuvelink, Gerard B. M.
    Lewis, Simon L.
    Phillips, Oliver L.
    Asner, Gregory P.
    Armston, John
    Ashton, Peter S.
    Banin, Lindsay
    Bayol, Nicolas
    Berry, Nicholas J.
    Boeckx, Pascal
    de Jong, Bernardus H. J.
    DeVries, Ben
    Girardin, Cecile A. J.
    Kearsley, Elizabeth
    Lindsell, Jeremy A.
    Lopez-Gonzalez, Gabriela
    Lucas, Richard
    Malhi, Yadvinder
    Morel, Alexandra
    Mitchard, Edward T. A.
    Nagy, Laszlo
    Qie, Lan
    Quinones, Marcela J.
    Ryan, Casey M.
    Ferry, Slik J. W.
    Sunderland, Terry
    Laurin, Gaia Vaglio
    Gatti, Roberto Cazzolla
    Valentini, Riccardo
    Verbeeck, Hans
    Wijaya, Arief
    Willcock, Simon
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (04) : 1406 - 1420
  • [6] Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda
    Valerio Avitabile
    Martin Herold
    Matieu Henry
    Christiane Schmullius
    [J]. Carbon Balance and Management, 6 (1)
  • [7] A first map of tropical Africa's above-ground biomass derived from satellite imagery
    Baccini, A.
    Laporte, N.
    Goetz, S. J.
    Sun, M.
    Dong, H.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04):
  • [8] Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps
    Baccini, A.
    Goetz, S. J.
    Walker, W. S.
    Laporte, N. T.
    Sun, M.
    Sulla-Menashe, D.
    Hackler, J.
    Beck, P. S. A.
    Dubayah, R.
    Friedl, M. A.
    Samanta, S.
    Houghton, R. A.
    [J]. NATURE CLIMATE CHANGE, 2012, 2 (03) : 182 - 185
  • [9] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [10] Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
    Bonan, Gordon B.
    [J]. SCIENCE, 2008, 320 (5882) : 1444 - 1449