On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm

被引:173
|
作者
Roberts, GO [1 ]
Stramer, O
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
diffusion process; independence sampler; Markov chain Monte Carlo;
D O I
10.1093/biomet/88.3.603
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new Markov chain Monte Carlo approach to Bayesian analysis of discretely observed diffusion processes. We treat the paths between any two data points as missing data. As such, we show that, because of full dependence between the missing paths and the volatility of the diffusion, the rate of convergence of basic algorithms can be arbitrarily slow if the amount of the augmentation is large. We offer a transformation of the diffusion which breaks down dependency between the transformed missing paths and the volatility of the diffusion. We then propose two efficient Markov chain Monte Carlo algorithms to sample from the posterior-distribution of the transformed missing observations and the parameters of the diffusion. We apply our results to examples involving simulated data and also to Eurodollar short-rate data.
引用
收藏
页码:603 / 621
页数:19
相关论文
共 50 条
  • [1] Bayesian inference on the quantile autoregressive models with metropolis-hastings algorithm
    Zeng, Hui-Fang
    Zhu, Hui-Ming
    Li, Su-Fang
    Yu, Ke-Ming
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2010, 37 (02): : 88 - 92
  • [2] Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
    Dahlin, Johan
    Schon, Thomas B.
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (CN2): : 1 - 41
  • [3] Augmented pseudo-marginal Metropolis-Hastings for partially observed diffusion processes
    Golightly, Andrew
    Sherlock, Chris
    STATISTICS AND COMPUTING, 2022, 32 (01)
  • [4] A Metropolis-Hastings algorithm for dynamic causal models
    Chumbley, Justin R.
    Friston, Karl J.
    Fearn, Tom
    Kiebel, Stefan J.
    NEUROIMAGE, 2007, 38 (03) : 478 - 487
  • [5] Inference of gene regulatory network by Bayesian network using metropolis-hastings algorithm
    Kirimasthong, Khwunta
    Manorat, Aompilai
    Chaijaruwanich, Jeerayut
    Prasitwattanaseree, Sukon
    Thammarongtham, Chinae
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 276 - +
  • [6] A history of the Metropolis-Hastings algorithm
    Hitchcock, DB
    AMERICAN STATISTICIAN, 2003, 57 (04): : 254 - 257
  • [7] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    AMERICAN STATISTICIAN, 1995, 49 (04): : 327 - 335
  • [8] The Implicit Metropolis-Hastings Algorithm
    Neklyudov, Kirill
    Egorov, Evgenii
    Vetrov, Dmitry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    Arminger, G
    PSYCHOMETRIKA, 1998, 63 (03) : 271 - 300
  • [10] A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm
    Gerhard Arminger
    Bengt O. Muthén
    Psychometrika, 1998, 63 : 271 - 300