Stationary solutions of Euler-Poisson equations for non-isentropic gaseous stars

被引:2
作者
Xie, Huazhao [1 ]
Li, Suli [1 ]
机构
[1] Henan Univ Econ & Law, Dept Math, Zhengzhou 450002, Peoples R China
关键词
Euler-Poisson equations; non-isentropic; multiplicity of stationary solutions; uniqueness of stationary solution; KOHN-NIRENBERG INEQUALITIES; ELLIPTIC-EQUATIONS; NONEXISTENCE; EXISTENCE;
D O I
10.1002/mma.2529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The motion of the self-gravitational gaseous stars can be described by the EulerPoisson equations. For some velocity fields and entropy functions that solve the conservation of mass and energy, we consider the existence of stationary solutions of EulerPoisson equations. Under various restriction to the strength of velocity field, different assumptions on the isentropic function and adiabatic exponent, we get the existence, multiplicity and uniqueness of the stationary solutions to the EulerPoisson system, respectively. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1518 / 1531
页数:14
相关论文
共 16 条
[1]  
AUCHMUTY G., 1971, ARCH RATION MECH AN, V43, P255
[2]   Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities [J].
Bartsch, Thomas ;
Peng, Shuangjie ;
Zhang, Zhitao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :113-136
[3]   Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (02) :189-205
[4]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[5]  
2-I
[6]  
Chandrasekhar S., 1938, INTRO STUDY STELLAR
[7]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[8]   Solutions of Euler-Poisson equations for gaseous stars [J].
Deng, YB ;
Liu, TP ;
Yang, T ;
Yao, ZA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :261-285
[9]   Uniqueness of stationary solutions with vacuum of Euler-Poisson equations [J].
Deng, YB ;
Guo, YJ .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (03) :405-412
[10]  
Deng YB, 2010, ACTA MATH SCI, V30, P2077