Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors

被引:77
作者
Siegfried, T. [1 ]
Ekinci, Y. [1 ,2 ]
Solak, H. H. [3 ]
Martin, O. J. F. [4 ]
Sigg, H. [1 ]
机构
[1] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[2] ETH, Dept Mat, Lab Met Phys & Technol, CH-8093 Zurich, Switzerland
[3] Eulitha AG, CH-5232 Villigen, Switzerland
[4] Ecole Polytech Fed Lausanne, Nanophoton & Metrol Lab, CH-1015 Lausanne, Switzerland
关键词
evaporation; nanofabrication; nanolithography; nanostructured materials; numerical analysis; plasmonics; surface enhanced Raman scattering; LITHOGRAPHY; NANOSTRUCTURES;
D O I
10.1063/1.3672045
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a high-throughput method for the fabrication of metallic nanogap arrays with high-accuracy over large areas. This method, based on shadow evaporation and interference lithography, achieves sub-10 nm gap sizes with a high accuracy of +/- 1.5 nm. Controlled fabrication is demonstrated over mm(2) areas and for periods of 250 nm. Experiments complemented with numerical simulations indicate that the formation of nanogaps is a robust, self-limiting process that can be applied to wafer-scale substrates. Surface-enhanced Raman scattering (SERS) experiments illustrate the potential for plasmonic sensing with an exceptionally low standard-deviation of the SERS signal below 3% and average enhancement factors exceeding 1 x 10(6). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3672045]
引用
收藏
页数:3
相关论文
共 24 条
[1]   Large area arrays of metal nanowires [J].
Auzelyte, V. ;
Solak, H. H. ;
Ekinci, Y. ;
MacKenzie, R. ;
Voeroes, J. ;
Olliges, S. ;
Spolenak, R. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1131-1134
[2]   Extreme ultraviolet interference lithography at the Paul Scherrer Institut [J].
Auzelyte, Vaida ;
Dais, Christian ;
Farquet, Patrick ;
Gruetzmacher, Detlev ;
Heyderman, Laura J. ;
Luo, Feng ;
Olliges, Sven ;
Padeste, Celestino ;
Sahoo, Pratap K. ;
Thomson, Tom ;
Turchanin, Andrey ;
David, Christian ;
Solak, Harun H. .
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2009, 8 (02)
[3]   Nanostructured biosensing platform-shadow edge lithography for high-throughput nanofabrication [J].
Bai, John G. ;
Yeo, Woon-Hong ;
Chung, Jae-Hyun .
LAB ON A CHIP, 2009, 9 (03) :449-455
[4]   Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps [J].
Duan, Huigao ;
Hu, Hailong ;
Kumar, Karthik ;
Shen, Zexiang ;
Yang, Joel K. W. .
ACS NANO, 2011, 5 (09) :7593-7600
[5]   Vertically Oriented Sub-10-nm Plasmonic Nanogap Arrays [J].
Im, Hyungsoon ;
Bantz, Kyle C. ;
Lindquist, Nathan C. ;
Haynes, Christy L. ;
Oh, Sang-Hyun .
NANO LETTERS, 2010, 10 (06) :2231-2236
[6]   Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature [J].
Ishida, Tadashi ;
Nakajima, Yuuki ;
Endo, Junji ;
Collard, Dominique ;
Fujita, Hiroyuki .
NANOTECHNOLOGY, 2009, 20 (06)
[7]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670
[8]   Interference lithography: a powerful tool for fabricating periodic structures [J].
Lu, Cheng ;
Lipson, R. H. .
LASER & PHOTONICS REVIEWS, 2010, 4 (04) :568-580
[9]   Molecular lithography for wafer-scale fabrication of molecular junctions [J].
McCarty, GS .
NANO LETTERS, 2004, 4 (08) :1391-1394
[10]   Surface-enhanced Raman spectroscopy: a brief retrospective [J].
Moskovits, M .
JOURNAL OF RAMAN SPECTROSCOPY, 2005, 36 (6-7) :485-496