Fabrication of Carbon Nanotube Thin Films for Flexible Transistors by Using a Cross-Linked Amine Polymer

被引:6
作者
Matsumoto, Kaisei [1 ]
Ueno, Kazuki [1 ]
Hirotani, Jun [2 ]
Ohno, Yutaka [2 ,3 ]
Omachi, Haruka [1 ,4 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Dept Chem, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, Grad Sch Engn, Dept Elect, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[3] Nagoya Univ, Inst Mat & Syst Sustainabil, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[4] Nagoya Univ, Res Ctr Mat Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本学术振兴会;
关键词
carbon nanotubes; cross-linking; flexible; polyallylamine; thin film transistors; RAMAN-SPECTROSCOPY; FUNCTIONAL-GROUPS; ELECTRONICS; NETWORKS; CIRCUITS;
D O I
10.1002/chem.202000228
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Owing to their remarkable properties, single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) are expected to be used in various flexible electronics applications. To fabricate SWCNT channel layers for TFTs, solution-based film formation on a self-assembled monolayer (SAM) covered with amino groups is commonly used. However, this method uses highly oxidized surfaces, which is not suitable for flexible polymeric substrates. In this work, a solution-based SWCNT film fabrication using methoxycarbonyl polyallylamine (Moc-PAA) is reported. The NH2-terminated surface of the cross-linked Moc-PAA layer enables the formation of highly dense and uniform SWCNT networks on both rigid and flexible substrates. TFTs that use the fabricated SWCNT thin film exhibited excellent performance with small variations. The presented simple method to access SWCNT thin film accelerates the realization of flexible nanoelectronics.
引用
收藏
页码:6118 / 6121
页数:4
相关论文
共 50 条
  • [1] Sorting carbon nanotubes by electronic structure using density differentiation
    Arnold, Michael S.
    Green, Alexander A.
    Hulvat, James F.
    Stupp, Samuel I.
    Hersam, Mark C.
    [J]. NATURE NANOTECHNOLOGY, 2006, 1 (01) : 60 - 65
  • [2] Carbon nanotube transistors and logic circuits
    Avouris, P
    Martel, R
    Derycke, V
    Appenzeller, J
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 6 - 14
  • [3] Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects
    Cao, Qing
    Rogers, John A.
    [J]. ADVANCED MATERIALS, 2009, 21 (01) : 29 - 53
  • [4] Extreme oxygen sensitivity of electronic properties of carbon nanotubes
    Collins, PG
    Bradley, K
    Ishigami, M
    Zettl, A
    [J]. SCIENCE, 2000, 287 (5459) : 1801 - 1804
  • [5] Large-area and highly uniform carbon nanotube film for high-performance thin film transistors
    Dong, Guodong
    Zhao, Jie
    Shen, Lijun
    Xia, Jiye
    Meng, Hu
    Yu, Wenhuan
    Huang, Qi
    Han, Hua
    Liang, Xuelei
    Peng, Lianmao
    [J]. NANO RESEARCH, 2018, 11 (08) : 4356 - 4367
  • [6] Dresselhaus M. S., 2001, CARBON NANOTUBES SYN
  • [7] Raman spectroscopy on isolated single wall carbon nanotubes
    Dresselhaus, MS
    Dresselhaus, G
    Jorio, A
    Souza, AG
    Saito, R
    [J]. CARBON, 2002, 40 (12) : 2043 - 2061
  • [8] Raman spectroscopy of carbon nanotubes
    Dresselhaus, MS
    Dresselhaus, G
    Saito, R
    Jorio, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02): : 47 - 99
  • [9] Single functional group interactions with individual carbon nanotubes
    Friddle, Raymond W.
    Lemieux, Melburne C.
    Cicero, Giancarlo
    Artyukhin, Alexander B.
    Tsukruk, Vladimir V.
    Grossman, Jeffrey C.
    Galli, Giulia
    Noy, Aleksandr
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (11) : 692 - 697
  • [10] Flexible Electronics toward Wearable Sensing
    Gao, Wei
    Ota, Hiroki
    Kiriya, Daisuke
    Takei, Kuniharu
    Javey, Ali
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (03) : 523 - 533