A Deep-Neural-Network-Based Aerosol Optical Depth (AOD) Retrieval from Landsat-8 Top of Atmosphere Data

被引:17
作者
She, Lu [1 ]
Zhang, Hankui K. [2 ]
Bu, Ziqiang [1 ]
Shi, Yun [1 ]
Yang, Lu [1 ]
Zhao, Jintao [3 ]
机构
[1] Ningxia Univ, Sch Geog & Planning, Yinchuan 750021, Ningxia, Peoples R China
[2] South Dakota State Univ, Geospatial Sci Ctr Excellence, Dept Geog & Geospatial Sci, Brookings, SD 57007 USA
[3] Yellow River Conservancy Commiss, Yellow River Inst Hydraul Res, Zhengzhou 450003, Peoples R China
关键词
aerosol optical depth (AOD); Landsat-8; deep neural network; Google Earth Engine; AERONET; Collection-2; LAND; REFLECTANCE; VARIABILITY; PRODUCT; AERONET; OCEAN;
D O I
10.3390/rs14061411
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The 30 m resolution Landsat data have been used for high resolution aerosol optical depth (AOD) retrieval based on radiative transfer models. In this paper, a Landsat-8 AOD retrieval algorithm is proposed based on the deep neural network (DNN). A total of 6390 samples were obtained for model training and validation by collocating 8 years of Landsat-8 top of atmosphere (TOA) data and aerosol robotic network (AERONET) AOD data acquired from 329 AERONET stations over 30 degrees W-160 degrees E and 60 degrees N-60 degrees S. The Google Earth Engine (GEE) cloud-computing platform is used for the collocation to avoid a large download volume of Landsat data. Seventeen predictor variables were used to estimate AOD at 500 nm, including the seven bands TOA reflectance, two bands TOA brightness (BT), solar and viewing zenith and azimuth angles, scattering angle, digital elevation model (DEM), and the meteorological reanalysis total columnar water vapor and ozone concentration. The leave-one-station-out cross-validation showed that the estimated AOD agreed well with AERONET AOD with a correlation coefficient of 0.83, root-mean-square error of 0.15, and approximately 61% AOD retrievals within 0.05 + 20% of the AERONET AOD. Theoretical comparisons with the physical-based methods and the adaptation of the developed DNN method to Sentinel-2 TOA data with a different spectral band configuration are discussed.
引用
收藏
页数:16
相关论文
共 64 条
[1]  
Abadi M., TENSORFLOW LARGE SCA
[2]  
Allan R. P., 2021, SUMMARY POLICYMAKERS
[3]   Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases [J].
Bilal, Muhammad ;
Mhawish, Alaa ;
Nichol, Janet E. ;
Qiu, Zhongfeng ;
Nazeer, Majid ;
Ali, Md Arfan ;
de Leeuw, Gerrit ;
Levy, Robert C. ;
Wang, Yu ;
Chen, Yang ;
Wang, Lunche ;
Shi, Yuan ;
Bleiweiss, Max P. ;
Mazhar, Usman ;
Atique, Luqman ;
Ke, Song .
REMOTE SENSING OF ENVIRONMENT, 2021, 264 (264)
[4]   Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method [J].
Chen, Xingfeng ;
de Leeuw, Gerrit ;
Arola, Antti ;
Liu, Shumin ;
Liu, Yang ;
Li, Zhengqiang ;
Zhang, Kainan .
REMOTE SENSING OF ENVIRONMENT, 2020, 249
[5]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575
[6]  
Dong LC, 2020, CHEMOSPHERE, V256, DOI [10.1016/j.chemosphere.2020.127051, 10.1016/j.chemospere.2020.127051]
[7]  
Dubovik O., 2014, SPIE: Newsroom, DOI [10.1117/2.1201408.005558, DOI 10.1117/2.1201408.005558]
[8]   Analysis Ready Data: Enabling Analysis of the Landsat Archive [J].
Dwyer, John L. ;
Roy, David P. ;
Sauer, Brian ;
Jenkerson, Calli B. ;
Zhang, Hankui K. ;
Lymburner, Leo .
REMOTE SENSING, 2018, 10 (09)
[9]   Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring [J].
Egorov, Alexey V. ;
Roy, David P. ;
Zhang, Hankui K. ;
Li, Zhongbin ;
Yan, Lin ;
Huang, Haiyan .
REMOTE SENSING, 2019, 11 (04)
[10]   A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation [J].
Ge, Bangyu ;
Li, Zhengqiang ;
Liu, Li ;
Yang, Leiku ;
Chen, Xingfeng ;
Hou, Weizhen ;
Zhang, Yang ;
Li, Donghui ;
Li, Li ;
Qie, Lili .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01) :381-394