Stiff reaction term;
Shock capturing;
Detonation;
WENO;
ENO subcell resolution;
HYPERBOLIC CONSERVATION-LAWS;
RANDOM PROJECTION METHOD;
REACTION-CONVECTION EQUATIONS;
STATE NUMERICAL-SOLUTIONS;
SHOCK-CAPTURING SCHEMES;
NONLINEAR SOURCE TERMS;
EFFICIENT IMPLEMENTATION;
DIMENSIONAL DETONATIONS;
DYNAMICAL-APPROACH;
WAVE-PROPAGATION;
D O I:
10.1016/j.jcp.2011.08.031
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers. (C) 2011 Elsevier Inc. All rights reserved.
机构:
UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB, DEPT MATH, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY LAWRENCE BERKELEY LAB, DEPT MATH, BERKELEY, CA 94720 USA
机构:
UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB, DEPT MATH, BERKELEY, CA 94720 USAUNIV CALIF BERKELEY LAWRENCE BERKELEY LAB, DEPT MATH, BERKELEY, CA 94720 USA