Semigroups of analytic Toeplitz operators on H2

被引:0
作者
Seubert, SM [1 ]
机构
[1] Bowling Green State Univ, Bowling Green, OH 43403 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2004年 / 30卷 / 01期
关键词
semigroups; analytic Toelpitz operators; Hardy spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any function C analytic on the open unit disc, we define the Toeplitz operator T-C having domain D(T-C)={f is an element of H-2:Cf is in H-2} in the Hardy space H-2 by T-C:f-->Cf. Using a result of Suarez, we show that a closed operator R having domain D(R) dense in H-2 commutes with the standard unilateral shift S:f(z)-->zf(z) on D(R) if and only if there exits a function C in the Nevanlinna class N+ for which R=T-C on D(T-C) (see Corollary 3.3). Using this result, we show that a collection {Rt:t>0} of bounded linear operators commuting with S on H-2 is a C-0-semigroup if and only if there exists a function C analytic and having real part bounded above on the open unit disc for which R-t = T(e)tC for all t>0 (see Theorem 5.2).
引用
收藏
页码:137 / 145
页数:9
相关论文
共 7 条