A quantitative stability estimate for the fractional Faber-Krahn inequality

被引:10
作者
Brasco, Lorenzo [1 ]
Cinti, Eleonora [2 ]
Vita, Stefano [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, Ferrara 44121, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, Bologna 40126, Italy
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, Milan 20125, Italy
关键词
Stability of eigenvalues; Fractional Laplacian; REGULARITY; EIGENVALUES; LAPLACIAN; EQUATIONS;
D O I
10.1016/j.jfa.2020.108560
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:49
相关论文
共 36 条
[1]  
Almgren F. J., 1989, J AM MATH SOC, V2, P683, DOI 10.1090/s0894-0347-1989-1002633-4
[2]   A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes [J].
Bañuelos, R ;
Latala, R ;
Méndez-Hernández, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) :2997-3008
[3]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[4]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[5]   Higher Holder regularity for the fractional p-Laplacian in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik ;
Schikorra, Armin .
ADVANCES IN MATHEMATICS, 2018, 338 :782-846
[6]  
Brasco L, 2017, SHAPE OPTIMIZATION AND SPECTRAL THEORY, P201
[7]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[8]   FABER-KRAHN INEQUALITIES IN SHARP QUANTITATIVE FORM [J].
Brasco, Lorenzo ;
De Philippis, Guido ;
Velichkov, Bozhidar .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (09) :1777-1831
[9]   Weighted Dirichlet-type inequalities for Steiner symmetrization [J].
Brock, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (01) :15-25
[10]   Cases of equality in the Riesz rearrangement inequality [J].
Burchard, A .
ANNALS OF MATHEMATICS, 1996, 143 (03) :499-527