LMI-based analysis for continuous-discrete linear shift-invariant nD systems

被引:13
作者
Bochniak, J [1 ]
Galkowski, K [1 ]
机构
[1] Univ Zielona Gora, Inst Control & Computat Engn, PL-65246 Zielona Gora, Poland
关键词
Linear Matrix Inequality (LMI); multidimensional (nD) systems; continuous-discrete (hybrid) systems; uncertainty; stability; stability margins; robust stability; stabilization; stabilization to the prescribed stability margins; robust stabilization;
D O I
10.1142/S0218126605002350
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we describe the Linear Matrix Inequality (LMI) approach to the analysis and the synthesis of continuous-discrete linear shift-invariant multidimensional systems presented in the Roesser form. We consider stability, stability margins, robust stability, stabilization and stabilization to the prescribed stability margins and robust stabilization. An example is included as illustrations of the obtained results.
引用
收藏
页码:307 / 332
页数:26
相关论文
共 13 条
[1]   THE LYAPUNOV EQUATION FOR N-DIMENSIONAL DISCRETE-SYSTEMS [J].
AGATHOKLIS, P .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (04) :448-451
[2]  
Antsaklis P. J., 1997, LINEAR SYSTEMS
[3]  
BIALAS S, 1987, SCI B STANISLAW STAS, V41
[4]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[5]   LMI based stability analysis and robust controller design for discrete linear repetitive processes [J].
Galkowski, K ;
Lam, J ;
Rogers, E ;
Xu, S ;
Sulikowski, B ;
Paszke, W ;
Owens, DH .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2003, 13 (13) :1195-1211
[6]  
Galkowski K, 2002, ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, P923, DOI 10.1109/ICECS.2002.1046399
[7]   Stability and control of differential linear repetitive processes using an LMI setting [J].
Galkowski, K ;
Paszke, W ;
Rogers, E ;
Xu, S ;
Lam, J ;
Owens, DH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2003, 50 (09) :662-666
[8]   LMI approach to state-feedback stabilization of multidimensional systems [J].
Galkowski, K ;
Lam, J ;
Xu, SY ;
Lin, ZP .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (14) :1428-1436
[9]   LMI based stability analysis and controller design for a class of 2D continuous-discrete linear systems [J].
Galkowski, K ;
Paszke, W ;
Sulikowski, B ;
Rogers, E ;
Owens, DH .
PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 :29-34
[10]  
Kaczorek T., 1985, LECT NOTES CONTROL I, V68