Linear-Time Recognition of Double-Threshold Graphs

被引:3
作者
Kobayashi, Yusuke [1 ]
Okamoto, Yoshio [2 ]
Otachi, Yota [3 ]
Uno, Yushi [4 ]
机构
[1] Kyoto Univ, Kyoto, Japan
[2] Univ Electrocommun, Chofu, Tokyo, Japan
[3] Nagoya Univ, Nagoya, Aichi, Japan
[4] Osaka Prefecture Univ, Sakai, Osaka, Japan
关键词
Double-threshold graph; Bipartite permutation graph; Star pairwise compatibility graph; INTERVAL;
D O I
10.1007/s00453-021-00921-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A graph G = (V, E) is a double-threshold graph if there exist a vertex-weight function w: V -> R and two real numbers lb, ub. R such that uv is an element of E if and only if lb <= w(u) + w(v) <= ub. In the literature, those graphs are studied also as the pairwise compatibility graphs that have stars as their underlying trees. We give a new characterization of double-threshold graphs that relates them to bipartite permutation graphs. Using the new characterization, we present a linear-time algorithm for recognizing double-threshold graphs. Prior to our work, the fastest known algorithm by Xiao and Nagamochi [Algorithmica 2020] ran in O(n(3)m) time, where n and m are the numbers of vertices and edges, respectively.
引用
收藏
页码:1163 / 1181
页数:19
相关论文
共 27 条
  • [1] [Anonymous], 1995, C NUM
  • [2] Barrus MD, 2018, DISCRETE MATH THEOR, V20
  • [3] Mock threshold graphs
    Behr, Richard
    Sivaraman, Vaidy
    Zaslaysky, Thomas
    [J]. DISCRETE MATHEMATICS, 2018, 341 (08) : 2159 - 2178
  • [4] THRESHOLD CHARACTERIZATION OF GRAPHS WITH DILWORTH NUMBER 2
    BENZAKEN, C
    HAMMER, PL
    DEWERRA, D
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (02) : 245 - 267
  • [5] Pairwise Compatibility Graphs: A Survey
    Calamoneri, Tiziana
    Sinaimeri, Blerina
    [J]. SIAM REVIEW, 2016, 58 (03) : 445 - 460
  • [6] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &
  • [7] Golumbic M.C., 2004, ALGORITHMIC GRAPH TH, Vsecond
  • [8] Hamburger P., 2018, LIPIcs, V117, p69:1, DOI DOI 10.4230/LIPICS.MFCS.2018.69
  • [9] BITHRESHOLD GRAPHS
    HAMMER, PL
    MAHADEV, NVR
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (03): : 497 - 506
  • [10] Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs
    Heggernes, Pinar
    van 't Hof, Pim
    Meister, Daniel
    Villanger, Yngve
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 562 : 252 - 269