MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY: A SYSTEMATIC REVIEW

被引:0
作者
Vagliano, Iacopo [1 ]
Chesnaye, Nicholas [1 ,3 ]
Leopold, Jan Hendrik [1 ,2 ]
Jager, Kitty J. [1 ,3 ]
Abu Hanna, Ameen [1 ,2 ]
Schut, Martijn C. [1 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Med Informat, Amsterdam, Netherlands
[2] ERA EDTA Registry, Amsterdam, Netherlands
[3] Amsterdam Publ Hlth Res Inst, Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
R3 [基础医学]; R4 [临床医学];
学科分类号
1001 ; 1002 ; 100602 ;
摘要
MO360
引用
收藏
页数:1
相关论文
共 50 条
[31]   Machine Learning Models for Predicting Mortality in Hemodialysis Patients: A Systematic Review [J].
Motofelea, Alexandru Catalin ;
Mihaescu, Adelina ;
Olariu, Nicu ;
Marc, Luciana ;
Chisavu, Lazar ;
Pop, Gheorghe Nicusor ;
Crintea, Andreea ;
Jura, Ana Maria Cristina ;
Ivan, Viviana Mihaela ;
Apostol, Adrian ;
Schiller, Adalbert .
APPLIED SCIENCES-BASEL, 2025, 15 (10)
[32]   Machine learning predictive models for acute pancreatitis: A systematic review [J].
Zhou, You ;
Ge, Yu-tong ;
Shi, Xiao-lei ;
Wu, Ke-yan ;
Chen, Wei-wei ;
Ding, Yan-bing ;
Xiao, Wei-ming ;
Wang, Dan ;
Lu, Guo-tao ;
Hu, Liang-hao .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 157
[33]   Machine learning models for acute kidney injury prediction and management: a scoping review of externally validated studies [J].
Rehman, Aqeeb Ur ;
Neyra, Javier A. ;
Chen, Jin ;
Ghazi, Lama .
CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2025,
[34]   Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review [J].
Li, Jie ;
Zhu, Manli ;
Yan, Li .
RENAL FAILURE, 2024, 46 (02)
[35]   Predicting blood transfusion following traumatic injury using machine learning models: A systematic review and narrative synthesis [J].
Oakley, William ;
Tandle, Sankalp ;
Perkins, Zane ;
Marsden, Max .
JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2024, 97 (04) :651-659
[36]   Development, External Validation, and Visualization of Machine Learning Models for Predicting Occurrence of Acute Kidney Injury after Cardiac Surgery [J].
Shao, Jiakang ;
Liu, Feng ;
Ji, Shuaifei ;
Song, Chao ;
Ma, Yan ;
Shen, Ming ;
Sun, Yuntian ;
Zhu, Siming ;
Guo, Yilong ;
Liu, Bing ;
Wu, Yuanbin ;
Qin, Handai ;
Lai, Shengwei ;
Fan, Yunlong .
REVIEWS IN CARDIOVASCULAR MEDICINE, 2023, 24 (08)
[37]   Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation [J].
ZengLei He ;
JunBin Zhou ;
ZhiKun Liu ;
SiYi Dong ;
YunTao Zhang ;
Tian Shen ;
ShuSen Zheng ;
Xiao Xu .
Hepatobiliary & Pancreatic Diseases International, 2021, 20 (03) :222-231
[38]   Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation [J].
He, Zeng-Lei ;
Zhou, Jun-Bin ;
Liu, Zhi-Kun ;
Dong, Si-Yi ;
Zhang, Yun-Tao ;
Shen, Tian ;
Zheng, Shu-Sen ;
Xu, Xiao .
HEPATOBILIARY & PANCREATIC DISEASES INTERNATIONAL, 2021, 20 (03) :222-231
[39]   Predicting outcomes of acute kidney injury in critically ill patients using machine learning [J].
Nateghi Haredasht, Fateme ;
Viaene, Liesbeth ;
Pottel, Hans ;
De Corte, Wouter ;
Vens, Celine .
SCIENTIFIC REPORTS, 2023, 13 (01)
[40]   Machine learning model for predicting acute kidney injury progression in critically ill patients [J].
Wei, Canzheng ;
Zhang, Lifan ;
Feng, Yunxia ;
Ma, Aijia ;
Kang, Yan .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)