New variable separation solutions of two-dimensional Burgers system

被引:18
作者
Gurefe, Yusuf [1 ,2 ]
Misirli, Emine [2 ]
机构
[1] Bozok Univ, Dept Math, TR-66100 Yozgat, Turkey
[2] Ege Univ, Dept Math, TR-35100 Bornova, Turkey
关键词
Variable separation solution; Two-dimensional Burgers system; (G/G ')-expansion method; Auxiliary equation method; EXP-FUNCTION METHOD; NONLINEAR EVOLUTION-EQUATIONS; SOLITARY WAVE SOLUTIONS; DIFFERENTIAL-DIFFERENCE EQUATIONS; NOVIKOV-VESELOV SYSTEM; (G'/G)-EXPANSION METHOD; EXPANSION METHOD; BACKLUND TRANSFORMATION; SYMBOLIC COMPUTATION;
D O I
10.1016/j.amc.2011.03.157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, with the help of (G/G')-expansion method, we obtain some exact solutions of the Riccati equation. Based on the Riccati equation and its exact solutions, we find some variable separation solutions with two arbitrary functions of two-dimensional Burgers system. As some special examples, these exact solutions can be reduced to variable separation solutions in kink solution, soliton solution, periodic solution and rational function solution forms. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9189 / 9197
页数:9
相关论文
共 41 条
[1]   The (G′/G) expansion method for Tzitzeica type nonlinear evolution equations [J].
Abazari, Reza .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1834-1845
[2]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[3]   Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations [J].
Baldwin, D ;
Göktas, Ü ;
Hereman, W .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 162 (03) :203-217
[4]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[5]   Application of the Exp-function method for nonlinear differential-difference equations [J].
Bekir, Ahmet .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) :4049-4053
[6]  
Bin Z Y, 2009, COMMUN THEOR PHYS, V51, P664
[7]   Combined wave solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov system [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
PHYSICS LETTERS A, 2008, 372 (11) :1810-1815
[8]   New variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1496-1503
[9]   New exact solutions of the (3+1)-dimensional Burgers system [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
PHYSICS LETTERS A, 2009, 373 (02) :181-187
[10]  
Dai ZD., 2010, Nonlinear Sci. Lett. A, V1, P77