Stellar-Mass Black Hole Optimization for Biclustering Microarray Gene Expression Data

被引:24
作者
Balamurugan, R. [1 ]
Natarajan, A. M. [1 ]
Premalatha, K. [1 ]
机构
[1] Bannari Amman Inst Technol, Erode 638401, Tamil Nadu, India
关键词
Black holes - Gravitation - Particle swarm optimization (PSO) - Stars;
D O I
10.1080/08839514.2015.1016391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray gene expression data analysis has provided new insights into gene function, disease pathophysiology, disease classification, and drug development. Biclustering in gene expression data is a subset of the genes demonstrating consistent patterns over a subset of the conditions. The proposed work finds the significant biclusters in large expression data using a novel optimization technique called stellar-mass black hole optimization (SBO). This optimization algorithm is inspired from the property of the relentless pull of a black hole's gravity that is present in the Universe. The proposed work is tested on benchmark optimization test functions and gene expression benchmark datasets, and the results are compared with swarm intelligence techniques such as particle swarm optimization (PSO), and cuckoo search (CK). The experimental results show that the SBO outperforms PSO and CK.
引用
收藏
页码:353 / 381
页数:29
相关论文
共 35 条
[1]   Analysis of time-series gene expression data: Methods, challenges, and opportunities [J].
Androulakis, I. P. ;
Yang, E. ;
Almon, R. R. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 :205-228
[2]  
[Anonymous], BMC BIOINFORMATICS
[3]  
[Anonymous], 1997, THESIS CALIFORNIA I
[4]  
[Anonymous], 2009, J. Math. Model. Algor., DOI DOI 10.1007/S10852-009-9102-8
[5]   A memetic algorithm for discovering negative correlation biclusters of DNA microarray data [J].
Ayadi, Wassim ;
Hao, Jin-Kao .
NEUROCOMPUTING, 2014, 145 :14-22
[6]   Pattern-driven neighborhood search for biclustering of microarray data [J].
Ayadi, Wassim ;
Elloumi, Mourad ;
Hao, Jin-Kao .
BMC BIOINFORMATICS, 2012, 13
[7]   Discovering local structure in gene expression data: The order-preserving submatrix problem [J].
Ben-Dor, A ;
Chor, B ;
Karp, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) :373-384
[8]   Iterative signature algorithm for the analysis of large-scale gene expression data [J].
Bergmann, S ;
Ihmels, J ;
Barkai, N .
PHYSICAL REVIEW E, 2003, 67 (03) :18
[9]   An EA framework for biclustering of gene expression data [J].
Bleuler, S ;
Preli, A ;
Zitzler, E .
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, :166-173
[10]  
Chaisson E., 2008, ASTRONOMY TODAY STAR