Multiparameter-analysis of CO2/Steam-enhanced gasification and pyrolysis for syngas and biochar production from low-cost feedstock

被引:39
|
作者
Evaristo, Rafael B. W. [1 ]
Ferreira, Ricardo [2 ]
Rodrigues, Juliana Petrocchi [3 ]
Rodrigues, Juliana Sabino [5 ]
Ghesti, Grace F. [1 ]
Silveira, Edgar A. [4 ]
Costa, M. [2 ]
机构
[1] Univ Brasilia, Chem Inst, Lab Brewing Bioproc & Catalysis Renewable Energy, BR-70910900 Brasilia, DF, Brazil
[2] Univ Lisbon, Inst Super Tecn, Mech Engn Dept, IDMEC, Lisbon, Portugal
[3] Univ Brasilia, Fac Gama, BR-70910900 Brasilia, DF, Brazil
[4] Univ Brasilia, Mech Engn Dept, BR-70910900 Brasilia, DF, Brazil
[5] Brazilian Forest Serv, Forest Prod Lab, BR-70818900 Brasilia, DF, Brazil
关键词
Waste-to-energy; Spent coffee ground; Brewers' spent grains; Pyrolysis; Gasification; Low-cost feedstock; SPENT COFFEE GROUNDS; HYDROGEN-RICH GAS; STEAM GASIFICATION; BIOMASS GASIFICATION; EXERGY ANALYSIS; ENERGY RECOVERY; FUEL PROPERTIES; BIO-OIL; TORREFACTION; WASTE;
D O I
10.1016/j.ecmx.2021.100138
中图分类号
O414.1 [热力学];
学科分类号
摘要
The disposal of spent coffee grounds (SCG) and brewers' spent grains (BSG) has become an environmental issue. Thus, the waste-to-energy valorization of these two low-cost feedstocks was performed via gasification and pyrolysis to assess their potential as syngas and biochar fuels. The processes' optimum conditions were investigated by a multiple-criteria decision support method. Firstly, both raw materials were gasified at 1000 degrees C with O-2/N-2, O-2/CO2/N-2 and O-2/H2O/N-2 atmospheres. The characteristics and energy performance of the producer gas were evaluated. In addition, the exergy analysis of green-H-2 production was assessed. The pyrolysis experiments were conducted at 300, 500 and 700 degrees C, followed by a comprehensive characterization of the biochar properties and its combustion behavior. The syngas production based on CO2/Steam-enhanced gasification has indicated clear energetic and exergetic improvements against O-2/N-2 with a promising increase of 32.97% LHVsyngas for BSG. Obtained biochar possesses favorable fuel characteristics promoting an HHV enhancement up to 19.42% (SCG) and 83.11% (BSG). Furthermore, the combustion index indicated a great potential of using SCG and BSG as solid biofuel for straightforward application to heat generation in small-scale systems. Therefore, syngas and biochar characteristics encourage feasible biofuels from low-cost feedstocks for energy generation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effect of torrefaction on steam-enhanced co-gasification of an urban forest and landfill waste blend: H2 production and CO2 emissions mitigation
    Lamas, Giulia Cruz
    Chaves, Bruno Santanna
    Rodrigues, Pedro Paulo de Oliveira
    Gonzales, Thiago da Silva
    Barbosa, Thais
    Rousset, Patrick
    Ghesti, Grace F.
    Silveira, Edgar A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (70) : 27151 - 27169
  • [2] Syngas Production from Combined Steam Gasification of Biochar and a Sorption-Enhanced Water-Gas Shift Reaction with the Utilization of CO2
    Chimpae, Supanida
    Wongsakulphasatch, Suwimol
    Vivanpatarakij, Supawat
    Glinrun, Thongchai
    Wiwatwongwana, Fasai
    Maneeprakorn, Weerakanya
    Assabumrungrat, Suttichai
    PROCESSES, 2019, 7 (06):
  • [3] Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2
    Deparrois, N.
    Singh, P.
    Burra, K. G.
    Gupta, A. K.
    APPLIED ENERGY, 2019, 246 (1-10) : 1 - 10
  • [4] The effect of inherent inorganics and CO2 co-pyrolysis on biochar production from biowastes and their gasification reactivity
    Chun, Dave D.
    Ni, Derek
    Simson, Amanda
    BIOMASS & BIOENERGY, 2022, 158
  • [5] PYROLYSIS AND CO2 GASIFICATION OF COMPOSITE POLYMER ABSORBENT WASTE FOR SYNGAS PRODUCTION
    Burra, K. G.
    Singh, P.
    Deparrois, N.
    Gupta, A. K.
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2019, 2019,
  • [6] Syngas Production via CO2 Enhanced Gasification of Biomass Fuels
    Butterman, Heidi C.
    Castaldi, Marco J.
    ENVIRONMENTAL ENGINEERING SCIENCE, 2009, 26 (04) : 703 - 713
  • [7] Optimizing hydrogen-rich syngas production from sanitary waste via CO2 gasification and pyrolysis
    Paul, Akash
    Singh, Paramvir
    Panua, Rajsekhar
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 15695 - 15711
  • [8] BIOMASS GASIFICATION CHAR AS A LOW-COST ADSORBENT FOR CO2 CAPTURE
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    PAPERS OF THE 25TH EUROPEAN BIOMASS CONFERENCE, 2017, : 760 - 764
  • [9] Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production
    Chen, Shiyi
    Sun, Zhao
    Zhang, Qi
    Hu, Jun
    Xiang, Wenguo
    BIOMASS & BIOENERGY, 2017, 107 : 52 - 62
  • [10] Biochar production from slow pyrolysis of biomass under CO2 atmosphere: A review on the effect of CO2 medium on biochar production, characterisation, and environmental applications
    Premchand, Premchand
    Demichelis, Francesca
    Chiaramonti, David
    Bensaid, Samir
    Fino, Debora
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):