Aronszajn trees, square principles, and stationary reflection

被引:9
作者
Lambie-Hanson, Chris [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
关键词
D O I
10.1002/malq.201600040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of square(kappa) introduced by Brodsky and Rinot for the purpose of constructing kappa-Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at kappa but the stronger is not. We then prove that, if mu is a singular cardinal, square(mu) implies the existence of a special mu(+)-tree with a cf(mu)-ascent path, thus answering a question of Lucke. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:265 / 281
页数:17
相关论文
共 25 条
  • [1] [Anonymous], PROGR MATH
  • [2] [Anonymous], PREPRINT
  • [3] [Anonymous], COMMUNICATION
  • [4] [Anonymous], NOTRE DAME IN PRESS
  • [5] [Anonymous], 2010, HDB SET THEORY
  • [6] [Anonymous], ANN PURE 1 IN PRESS
  • [7] REDUCED POWERS OF SOUSLIN TREES
    Brodsky, Ari Meir
    Rinot, Assaf
    [J]. FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [8] Indexed squares
    Cummings, J
    Schimmerling, E
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) : 61 - 99
  • [9] Cummings James, 2001, Journal of Mathematical Logic, V01, P35
  • [10] Jech T., 2003, Set Theory