The Open Reaction Database

被引:157
作者
Kearnes, Steven M. [1 ]
Maser, Michael R. [2 ]
Wleklinski, Michael [3 ]
Kast, Anton [4 ]
Doyle, Abigail G. [5 ]
Dreher, Spencer D. [3 ]
Hawkins, Joel M. [6 ]
Jensen, Klavs F. [7 ]
Coley, Connor W. [7 ,8 ]
机构
[1] Relay Therapeut, Cambridge, MA 02139 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Merck & Co Inc, Chem Capabil Accelerating Therapeut, Kenilworth, NJ 07033 USA
[4] Google LLC, Mountain View, CA 94043 USA
[5] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[6] Pfizer Worldwide Res & Dev, Chem Res & Dev, Groton, CT 06340 USA
[7] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[8] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
CHEMISTRY INFORMER LIBRARIES; PREDICTION; SYSTEM;
D O I
10.1021/jacs.1c09820
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemical reaction data in journal articles, patents, and even electronic laboratory notebooks are currently stored in various formats, often unstructured, which presents a significant barrier to downstream applications, including the training of machine-learning models. We present the Open Reaction Database (ORD), an open-access schema and infrastructure for structuring and sharing organic reaction data, including a centralized data repository. The ORD schema supports conventional and emerging technologies, from benchtop reactions to automated high-throughput experiments and flow chemistry. The data, schema, supporting code, and web-based user interfaces are all publicly available on GitHub. Our vision is that a consistent data representation and infrastructure to support data sharing will enable downstream applications that will greatly improve the state of the art with respect to computer-aided synthesis planning, reaction prediction, and other predictive chemistry tasks.
引用
收藏
页码:18820 / 18826
页数:7
相关论文
共 28 条
  • [1] Predicting reaction performance in C-N cross-coupling using machine learning
    Ahneman, Derek T.
    Estrada, Jesus G.
    Lin, Shishi
    Dreher, Spencer D.
    Doyle, Abigail G.
    [J]. SCIENCE, 2018, 360 (6385) : 186 - 190
  • [2] Development of an automated kinetic profiling system with online HPLC for reaction optimization
    Christensen, Melodie
    Adedeji, Folarin
    Grosser, Shane
    Zawatzky, Kerstin
    Ji, Yining
    Liu, Jinchu
    Jurica, Jon A.
    Naber, John R.
    Hein, Jason E.
    [J]. REACTION CHEMISTRY & ENGINEERING, 2019, 4 (09) : 1555 - 1558
  • [3] Machine Learning in Computer-Aided Synthesis Planning
    Coley, Connor W.
    Green, William H.
    Jensen, Klays F.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (05) : 1281 - 1289
  • [4] Prediction of Organic Reaction Outcomes Using Machine Learning
    Coley, Connor W.
    Barzilay, Regina
    Jaakkola, Tommi S.
    Green, William H.
    Jensen, Klays F.
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (05) : 434 - 443
  • [5] Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis
    DeLano, Travis J.
    Reisman, Sarah E.
    [J]. ACS CATALYSIS, 2019, 9 (08): : 6751 - 6754
  • [6] Chemistry Informer Libraries: Conception, Early Experience, and Role in the Future of Cheminformatics
    Dreher, Spencer D.
    Krska, Shane W.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (07) : 1586 - 1596
  • [7] Using Machine Learning To Predict Suitable Conditions for Organic Reactions
    Gao, Hanyu
    Struble, Thomas J.
    Coley, Connor W.
    Wang, Yuran
    Green, William H.
    Jensen, Klavs F.
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (11) : 1465 - 1476
  • [8] Building a Sulfonamide Library by Eco-Friendly Flow Synthesis
    Gioiello, Antimo
    Rosatelli, Emiliano
    Teofrasti, Michela
    Filipponi, Paolo
    Pellicciari, Roberto
    [J]. ACS COMBINATORIAL SCIENCE, 2013, 15 (05) : 235 - 239
  • [9] Controlling an organic synthesis robot with machine learning to search for new reactivity
    Granda, Jaroslaw M.
    Donina, Liva
    Dragone, Vincenza
    Long, De-Liang
    Cronin, Leroy
    [J]. NATURE, 2018, 559 (7714) : 377 - +
  • [10] Design of an invitro biocatalytic cascade for the manufacture of islatravir
    Huffman, Mark A.
    Fryszkowska, Anna
    Alvizo, Oscar
    Borra-Garske, Margie
    Campos, Kevin R.
    Canada, Keith A.
    Devine, Paul N.
    Duan, Da
    Forstater, Jacob H.
    Grosser, Shane T.
    Halsey, Holst M.
    Hughes, Gregory J.
    Jo, Junyong
    Joyce, Leo A.
    Kolev, Joshua N.
    Liang, Jack
    Maloney, Kevin M.
    Mann, Benjamin F.
    Marshall, Nicholas M.
    McLaughlin, Mark
    Moore, Jeffrey C.
    Murphy, Grant S.
    Nawrat, Christopher C.
    Nazor, Jovana
    Novick, Scott
    Patel, Niki R.
    Rodriguez-Granillo, Agustina
    Robaire, Sandra A.
    Sherer, Edward C.
    Truppo, Matthew D.
    Whittaker, Aaron M.
    Verma, Deeptak
    Xiao, Li
    Xu, Yingju
    Yang, Hao
    [J]. SCIENCE, 2019, 366 (6470) : 1255 - +