Consequences of contractible geodesics on surfaces

被引:15
作者
Denvir, J [1 ]
MacKay, RS [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
geodesics; semiconjugacy; surface; dynamics;
D O I
10.1090/S0002-9947-98-02340-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geodesic flow of any Riemannian metric on a geodesically convex surface of negative Euler characteristic is shown to be semi-equivalent to that of any hyperbolic metric on a homeomorphic surface for which the boundary (if any) is geodesic. This has interesting corollaries. For example, it implies chaotic dynamics for geodesic flows on a torus with a simple contractible closed geodesic, and for geodesic hows on a sphere with three simple closed geodesics bounding disjoint discs.
引用
收藏
页码:4553 / 4568
页数:16
相关论文
共 25 条
[11]  
CARATHEDORY C, 1967, CALCULUS VARIATION 2
[12]  
COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9
[13]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [10.1007/978-1-4613-9586-7_3, DOI 10.1007/978-1-4613-9586-7_3]
[14]  
GUIVARCH Y, 1990, PROGR MATH, V83
[15]  
HANDEL M, 1985, ERGOD THEOR DYN SYST, V5, P373
[16]   Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. [J].
Hedlund, GA .
ANNALS OF MATHEMATICS, 1932, 33 :719-739
[17]  
Klingenberg W., 1978, Lectures on Closed Geodesics
[18]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[19]   A fundamental class of geodesics on any closed surface of genus greater than one [J].
Morse, Harold Marston .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1924, 26 (1-4) :25-60
[20]  
MORSE HM, 1935, J MATH, V14, P49