A many-objective evolutionary algorithm based on dominance and decomposition with reference point adaptation

被引:15
作者
Zou, Juan [1 ,2 ,3 ]
Zhang, Zhenghui [1 ,2 ,3 ]
Zheng, Jinhua [1 ,2 ,3 ,4 ]
Yang, Shengxiang [1 ,2 ,5 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Sch Comp Sci, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Cyberspace Sci, Xiangtan, Hunan, Peoples R China
[3] Xiangtan Univ, Fac Informat Engn, Xiangtan 411105, Peoples R China
[4] Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China
[5] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
基金
中国国家自然科学基金;
关键词
Many-objective optimization; Evolutionary algorithm; Pareto optimality; Reference point adaptation; NONDOMINATED SORTING APPROACH; MULTIOBJECTIVE OPTIMIZATION; PART I; CONVERGENCE; INDICATOR; MOEA/D;
D O I
10.1016/j.knosys.2021.107392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Achieving balance between convergence and diversity is a challenge in many-objective optimization problems (MaOPs). Many-objective evolutionary algorithms (MaOEAs) based on dominance and decomposition have been developed successfully for solving partial MaOPs. However, when the optimization problem has a complicated Pareto front (PF), these algorithms show poor versatility in MaOPs. To address this challenge, this paper proposes a co-guided evolutionary algorithm by combining the merits of dominance and decomposition. An elitism mechanism based on cascading sort is exploited to balance the convergence and diversity of the evolutionary process. At the same time, a reference point adaptation method is designed to adapt to different PFs. The performance of our proposed method is validated and compared with seven state-of-the-art algorithms on 200 instances of 27 widely employed benchmark problems. Experimental results fully demonstrate the superiority and versatility of our proposed method on MaOPs with regular and irregular PFs. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 67 条
[1]  
[Anonymous], 2013, P 15 ANN C COMP GEN
[2]  
[Anonymous], 2001, Rep. 004284029
[3]   A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization [J].
Asafuddoula, M. ;
Ray, Tapabrata ;
Sarker, Ruhul .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (03) :445-460
[4]   An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors [J].
Asafuddoula, Md ;
Singh, Hemant Kumar ;
Ray, Tapabrata .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (08) :2321-2334
[5]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[6]   A benchmark test suite for evolutionary many-objective optimization [J].
Cheng, Ran ;
Li, Miqing ;
Tian, Ye ;
Zhang, Xingyi ;
Yang, Shengxiang ;
Jin, Yaochu ;
Yao, Xin .
COMPLEX & INTELLIGENT SYSTEMS, 2017, 3 (01) :67-81
[7]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[8]   Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization with Degenerate and Disconnected Pareto Fronts [J].
Cheng, Ran ;
Jin, Yaochu ;
Narukawa, Kaname .
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT I, 2015, 9018 :127-140
[9]   A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization [J].
Chugh, Tinkle ;
Jin, Yaochu ;
Miettinen, Kaisa ;
Hakanen, Jussi ;
Sindhya, Karthik .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (01) :129-142
[10]   Handling multiple objectives with particle swarm optimization [J].
Coello, CAC ;
Pulido, GT ;
Lechuga, MS .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :256-279