Unraveling beam self-healing

被引:44
作者
Aiello, Andrea [1 ,2 ]
Agarwal, Girish S. [3 ,4 ,5 ]
Paur, Martin [6 ]
Stoklasa, Bohumil [6 ]
Hradil, Zdenek [6 ]
Rehacek, Jaroslav [6 ]
de la Hoz, Pablo [7 ]
Leuchs, Gerd [1 ]
Sanchez-Soto, Luis L. [1 ,7 ]
机构
[1] Max Planck Inst Phys Lichts, Staudtstr 2, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Theoret Phys 2, Staudtstr 2, D-91058 Erlangen, Germany
[3] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77845 USA
[4] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77845 USA
[5] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[6] Palacky Univ, Dept Opt, 17 Listopadu 12, Olomouc 77146, Czech Republic
[7] Univ Complutense, Fac Fis, Dept Opt, E-28040 Madrid, Spain
关键词
BESSEL BEAMS; LIGHT-BEAM; RECONSTRUCTION; PHASE; MICROMANIPULATION; DIFFRACTION; OBSTACLES; AMPLITUDE; PROPERTY; OPTICS;
D O I
10.1364/OE.25.019147
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that, contrary to popular belief, diffraction-free beams not only may reconstruct themselves after hitting an opaque obstacle but also, for example, Gaussian beams. We unravel the mathematics and the physics underlying the self-reconstruction mechanism and we provide for a novel definition for the minimum reconstruction distance beyond geometric optics, which is in principle applicable to any optical beam that admits an angular spectrum representation. Moreover, we propose to quantify the self-reconstruction ability of a beam via a newly established degree of self-healing. This is defined via a comparison between the amplitudes, as opposite to intensities, of the original beam and the obstructed one. Such comparison is experimentally accomplished by tailoring an innovative experimental technique based upon Shack-Hartmann wave front reconstruction. We believe that these results can open new avenues in this field. (C) 2017 Optical Society of America
引用
收藏
页码:19147 / 19157
页数:11
相关论文
共 37 条
[1]   Wave-optics description of self-healing mechanism in Bessel beams [J].
Aiello, Andrea ;
Agarwal, Girish S. .
OPTICS LETTERS, 2014, 39 (24) :6819-6822
[2]  
Andrews DL, 2008, STRUCTURED LIGHT AND ITS APPLICATIONS: AN INTRODUCTION TO PHASE-STRUCTURED BEAMS AND NANOSCALE OPTICAL FORCES, P1
[3]   Self-healing property of a caustic optical beam [J].
Anguiano-Morales, Marcelino ;
Martinez, Amalia ;
Iturbe-Castillo, M. David ;
Chavez-Cerda, Sabino ;
Alcala-Ochoa, N. .
APPLIED OPTICS, 2007, 46 (34) :8284-8290
[4]   Optical micromanipulation using a Bessel light beam [J].
Arlt, J ;
Garces-Chavez, V ;
Sibbett, W ;
Dholakia, K .
OPTICS COMMUNICATIONS, 2001, 197 (4-6) :239-245
[5]  
Arrizon V., 2015, ARXIV150303125
[6]  
BALL K, 1992, GEOMETRIAE DEDICATA, V41, P241
[7]  
Born M., 1999, Principles of optics, Vseventh
[8]   Self-reconstruction of a distorted nondiffracting beam [J].
Bouchal, Z ;
Wagner, J ;
Chlup, M .
OPTICS COMMUNICATIONS, 1998, 151 (4-6) :207-211
[9]   Resistance of nondiffracting vortex beam against amplitude and phase perturbations [J].
Bouchal, Z .
OPTICS COMMUNICATIONS, 2002, 210 (3-6) :155-164
[10]   Self-healing properties of optical Airy beams [J].
Broky, John ;
Siviloglou, Georgios A. ;
Dogariu, Aristide ;
Christodoulides, Demetrios N. .
OPTICS EXPRESS, 2008, 16 (17) :12880-12891