EPSTEIN ZETA-FUNCTIONS, SUBCONVEXITY, AND THE PURITY CONJECTURE

被引:12
作者
Blomer, Valentin [1 ]
机构
[1] Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
基金
美国国家科学基金会;
关键词
Epstein zeta-function; quadratic forms; subconvexity; sup-norms; Sarnak's purity conjecture; multiple Dirichlet series; EIGENFUNCTIONS; VALUES; INTEGERS; SERIES; SUMS;
D O I
10.1017/S1474748018000142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of k -ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on GL.k/ associated with the maximal parabolic of type.k 1; 1/, and the exact sup-norm exponent is determined to be.k 2/=8 for k > 4. In particular, if k is odd, this exponent is not in 1 4 Z, which is relevant in the context of Sarnak's purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
引用
收藏
页码:581 / 596
页数:16
相关论文
共 31 条
[1]  
Andersson J., 2015, PREPRINT
[2]  
ARTHUR J, 1980, COMPOS MATH, V40, P87
[3]  
Balasubramanian R., 1992, ENSEIGN MATH, V38, P13
[4]   DISTRIBUTION OF MASS OF HOLOMORPHIC CUSP FORMS [J].
Blomer, Valentin ;
Khan, Rizwanur ;
Young, Matthew .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (14) :2609-2644
[5]   Subconvexity for a double Dirichlet series [J].
Blomer, Valentin .
COMPOSITIO MATHEMATICA, 2011, 147 (02) :355-374
[6]  
Brumley F., 2013, PREPRINT
[7]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[8]   SUMS INVOLVING VALUES AT NEGATIVE INTEGERS OF L-FUNCTIONS OF QUADRATIC CHARACTERS [J].
COHEN, H .
MATHEMATISCHE ANNALEN, 1975, 217 (03) :271-285
[9]   Exceptional sequences of eigenfunctions for hyperbolic manifolds [J].
Donnelly, Harold .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1551-1555
[10]   On the theory of general zeta functions. [J].
Epstein, P .
MATHEMATISCHE ANNALEN, 1903, 56 :0615-0644